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Abstract

This is a review article on the topology of the space, so called, Fredholm—Lagrangian—Grass-
mannian and the quantityMaslov index” for paths in this space based on the standard theory of
functional analysis. Our standing point is to define the Maslov index for arbitrary paths in terms
of the fundamental spectral property of the Fredholm operators as an intersection number with
the “Maslov cycle”. This argument was first recognized by J. Phillips and was used to define the
“Spectral flow” not only for loops but also for arbitrary paths of selfadjoint Fredholm operators.
We make the arguments as elementary as possible.
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1. Introduction

This is a review article. We develop a unified theory of the topology of the space
“Fredholm-Lagrangian—Grassmannian” and the theory of the “Maslov index” for arbitrary
paths in this space. Most of the contents in this article are treated in the pépérsa]
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Also there are already many papers which treat with more or less similar topics with this
paper [8-11,16,24,29-313nd others).

Even so our method to treat with this topics, especially the treatment of the Maslov
index is different from other papers and so, the whole theory should be rewritten in a
self-contained and complete form for being well understood and we hope this article would
provide a reasonable framework of this subject. We would like to emphasis here that the
method for defining the Maslov index for paths with fixed end points is quite natural and
elementary as an intersection number with the “Maslov cycle”. This follows from the basic
spectral property of the Fredholm operators and the method is of course valid for finite
dimensional cases. We believe that these points must be important, and should be known
widely, since in the applications it naturally appears the requirement to treat with such an
integer for not only loops, but also paths of Lagrangian subspaces in an intrinsic way. Here
neither we need any generic arguments which was assumed in thel2@p@or we rely
on quantities, Leray index” and “Kashiwara index” which are only defined for the finite
dimensional cas€g8$,16,17,24,3Q]

There are many places in which the Maslov index and related quantities appear, and so
here we do not mention them, since they are explained and treated in many articles cited
above according to their subjects. Here we only concentrate to explain the basic theory of
the topology of the Fredholm—-Lagrangian—Grassmannian and the Maslov index for paths
from the point of view of the standard theory of functional analysis.

The main method in this article is in the analysis of operators on Hilbert spaces but
the arguments should be carefully carried out, simply because it is in the infinite dimen-
sion. There are many parts which are similar to finite dimensional cases, but also there
are many parts which are not just a generalization of the finite dimensional cases. We
will make clear the differences of the infinite dimensional case from finite dimensional
cases.

We avoid to base on a general theory of the infinite dimensional manifold theory and
try the treatments as elementally as possible and to be self-contained. However we must
recognize several highly non-trivial facts like:

(a) Kuiper'sTheorem A.1

(b) Palais’'sTheorem A.3

(c) The spaces of certain class of Fredholm operators are identified as classifying spaces
for K and KO-groups.

In Section 2we just begin from the basic facts in symplectic Hilbert space and the space
of their Lagrangian subspaces. Especially we explainr3t@iau map” precisely and give a
proof for determining the fundamental group of the Fredholm—Lagrangian—Grass- mannian.
In Section 3wve define the Maslov index for paths and the “Hérmander index” in the infinite
dimension and construct the universal covering space of the Fredholm—Lagrangian—Grass-
mannian. Also we discuss the Maslov index with the relations between certain bilinear
forms. In Section 4we summarize the finite dimensional cases and extend the quantity
“Kashiwara index” (“cross index”) to any triples of unitary operatorsSection Sve treat
with polarized symplectic Hilbert spaces and prove a symplectic reduction theorem in the
infinite dimension. Finally irSection 6we explain an example in this framework and a
formula relating with ‘Spectral Flow”.



K. Furutani / Journal of Geometry and Physics 51 (2004) 269-331 271

2. Symplectic Hilbert space and L agrangian subspace

We start from the definition of the symplectic Hilbert spaces and their isotropic, involutive
and Lagrangian subspaces and operations among them.

2.1. Symplectic Hilbert space

Let (H, (e, o), w) be a (real and separable) Hilbert space with an inner prqduet and
we assumédd has a symplectic formy (e, o), that is, a non-degenerate, skew-symmetric
bounded bilinear form.

Here we mean that the bilinear fornis non-degenerate in such a sense that the linear
map

o H— H* (= dualspacg () () = w(x, y) (2.1)

is an isomorphism between the Hilbert spatand its dual spacH*. In finite dimensional
cases, the injectivity of the map” implies that it is an isomorphism, but in the infinite
dimension this does not hold automatically. In our case we call the Hilbert space as a
symplectic Hilbert space.

In the theory below we do not replace the symplectic farmfter once it is introduced
on the real Hilbert spacé/, but we may always assume that there exists an orthogonal
transformation/ : H — H such that (x, y) = (Jx, y) for anyx, y € H andJ2 = —Id by
replacing the inner product with another one which defines an equivalent nofin on

We give the proof of this fact ilppendix D

So from the beginning we can assume the following relations:

"T=—J (IxJy)=(xy) andox Jy) =w(,y) forallx,ye H

Here’ J denotes the transpose Hfwith respect to the inner produg, e). In this case we
call these quantities, the symplectic foamthe inner producte, ¢) and the almost complex
structureJ are compatible each other.

Example 2.1. Let E be a real separable Hilbert space drtidits dual space. We denote
the identification betweeR andE*, byD : E — E*; E > x > D(x)(e) = (e, x) € E*
(Riesz Representation Theorem). We can introduce an inner product on the duak$pace
through the maf in an obvious way and then the direct sitiin= E & E* has a naturally
defined skew-symmetric bilinear form

w.HxH— R,
ox@ P, y® V) =v(x) — () = (JxDP), yD V),
where the almost complex structufe H — H is given as

Jx® ¢) =D p) ® —D(x).

Example2.2. Let A be a densely defined closed symmetric operator on a Hilbert dpace
Let D (A) (respectivelyD(A*)) be the domain ofA (respectivelyA*) and we impose the
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graph inner product o® (A*): (x, y)9 = (x, y) + (A*(x), A*(y)). Then®(A*) becomes a
Hilbert space an® (A) is a closed subspacei( A*) with respect to this graph norm. Lgt

be the factor spacg = ©(A*)/D(A). We can introduce a non-degenerate anti-symmetric
bilinear formw on B by

where we denote by], the class ofc € ©D(A*) in B.

It will be apparent of the well-definedness of the fasnjust from the definition of the
adjoint operator.

We will note the non-degeneracy of the fotsnthe factor spacg is identified with the
orthogonal complemer(A)+ of D(A) in D (A*) with respect to the graph inner product.
Itis characterized as follows:

D(A)T = {x € D(AY)|A*(x) € D(A¥) and A*(A*(x)) = —x}.

From this characterization we know at once thatrestricted to®(A)~ is an orthogonal
transformation into itself and defines an almost complex structu@(@n - and moreover
we have

o(x], Y]) = (A% (), ) — (x, A*(3)) = (A*(x), y) + (A*(A*(x)), A*()))
= (A*(x), y)9.

This equality shows that our Hilbert spaBewith the symplectic formw defined above
together with the almost complex structuté (after being identified with the orthogonal
complemen® (A)1) is a symplectic Hilbert space with a compatible symplectic form, inner
product and the almost complex structure.

We will deal with this example i&ection @ogether with a homotopy invariant, so called,
“Spectral flow” of a family of selfadjoint Fredholm operators.

Example 2.3. Letz : E — M be a real vector bundle on a manifald with a bundle
map of almost complex structurgs: E — E, J?> = —Id. By introducing a suitable
inner product onE and a (smooth) measure @ we have a Hilbert spack>(M, E) of
L-sections ofE with a symplectic form defined by the bundle mam an obvious way.

When we regard the real Hilbert spalleas a complex Hilbert space through the almost
complex structurd with the Hermitian inner producbe, ) ; = (e, o) — /—1w(e, e), We
denote it byH;, and we denote the group of unitary transformationgfgrby

UH ) = {U e B(H)|UJ=JU and 'UU = U'U = Id},

whereB(H) denotes the space of bounded linear operators on the real HilbertBpace
For a subspace in H, let us denote by.° the annihilator ofx with respect ta:

u’ ={x € Hlow(x,y) =0 forally € u}, (2.3)

and we denote the orthogonal complement (with respect to the fixed inner ptedejcbn
H) of by u't.
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Note that we know easily by the definition that for any subspatiee annihilaton.® is
closed by the similar way to prove the closedness of the orthogonal complimerntiso
by the non-degeneracy assumption of the symplectic form, we have the idempotentness of
the operationu — ©°. In general we have

Proposition 2.4. (u°)° = [i.

Proof. By the definition of the annihilator it will be apparentthat: (1°)°. Letzg € (u°)°
and assume thap ¢ [, then there is a bounded linear functiorfabn H such thatf = 0
onu and f(zo) # 0. By the non-degeneracy assumption of the symplectic torme have
an element:g € H such thatf(x) = w(x, ug). Thenug € u°, butw(zg, ug) # 0. Thisis a
contradiction. So there are no sugh O

The following properties will be proved easily.

Proposition 2.5. Let i, v be subspacesin H, then
(w+v)° =nu° m Ve, (2.4)

(umv)o = u° +1°. (2.5)

As in the same way with finite dimensional cases we characterize a suhspaégin
the following definition.

Definition 2.6.

(a) Isotropic, ifu C u°.

(b) Lagrangian, ifu® = u.

(c) Coaisotropic (or involutive), ifu°® C wu.

(d) Symplectic, ifu is closed ange + u° = H (= direct sum).

By the compatibility assumption among the symplectic faspthe inner producte, e)
and the almost complex structurghe following properties hold.

Proposition 2.7.

(a) If wisisotropic, then J(u) isalsoisotropicand u L J(w).

(b) If w isLagrangian, then p is a closed subspace, J() isalso Lagrangian and J(u) =
. Conversely let i be a closed subspace and assume that - = J(u), then i isa
Lagrangian subspace.

(c) If wiscoisotropic, then J(w) isalso coisotropic.

If u is symplectic, them + w° is a direct sum, however it is not always orthogonal.

Proposition 2.8. If 1 is symplectic, then the restriction of the map »” to each of 1 and
wn° isisomorphic with u* and (°)*, respectively. So, by replacing the inner product with
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a suitable one so that we can assume that ¢« and ©° are orthogonal and then each is a
symplectic Hilbert space with the compatible structure.

Proof. If we embedu* into H* by extendingf € u* to f being zero onu°, then for any
f thereis an element+ b € u + ° such thatw”(a + b) = f and from the assumptioh,
must be zero, that is, we havey, <) = (v*)|,,. Henceu is a symplectic Hilbert space.
So isu®. Then the rests of the proposition will follow easily frdPnoposition D.1 O

Remark 2.9.

(a) Let E be a finite dimensional subspace #h such thatt () E° = {0}, thenE is
symplectic in the above sense@éfinition 2.6d), that isE & E° = H.

(b) LetAi be a Lagrangian subspace ahthe a closed subspaceinPutH; = L + J(L)
andHp = L+ (A + J(L+ (N A), thenH; and H, are symplectic, of course with the
compatibility assumption of the symplectic structurefén

2.2. Lagrangian—-Grassmannian

Let A(H) denote the space of all Lagrangian subspacés. /e call this spackagran-
gian—Grassmannian of the symplectic Hilbert spacH.

Remark 2.10.

() Leth € A(H),thenbythe aboveroposition 2.%e have an orthogonal decomposition
H = A & J(») and by identifying the dual space afwith J(A) we know that any
symplectic Hilbert space is isomorphic with tBgample 2.1

(b) Inthe symplectic Hilbert space a maximum isotropic subspace is always a Lagrangian
subspace. Forthe symplectic Banach space (this is defined by the same way as symplec-
tic Hilbert spaces) a maximal isotropic subspace need not be a Lagrangian subspace,
moreover there is a symplectic Banach space which has no Lagrangian subspace (see
[23]). This fact says that a symplectic Banach space is not necessarily isomorphic with
a standard one of the forii @ V* with a reflexive Banach spadé In this article we
do not treat with the symplectic Banach space.

We denote byP, the orthogonal projection operator Hhonto the subspace With this
correspondence we embed H) into B(H) as a closed subset (s€erollary 2.12below
for the closedness):

P:AH) — B(H), A+ P (2.6)

Then it will be natural to introduce the metric d on the space A (H) asthe difference of the
norms of the corresponding projection operators: d(x, u) = [P, — P |l. Henceforth we
regard the space A (H) equipped with this metric always.

A projection operator in the image of the mBjis characterized by the following propo-
sition.
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Proposition 2.11. Let P be an orthogonal projection operator in H. Then the image P(H)
isa Lagrangian subspace, ifandonlyif J = Jo P+ Po J.

Proof. Let an orthogonal projection operatér satisfy the relation/ = JP + PJ, then
we havew (P(x), P(y)) = (J o P(x), P(y)) = (J(x) — P o J(x), P(y)) = (J(x), P(y)) —

(J(x), P(y)) = 0. SOP(H) is anisotropic subspace. Let assume foramyH w(P(x), y) =

0, then{J(x) — P o J(x), y) = 0. So we havéJ(x), y — P(y)) = 0 for anyx € H. Hence
y = P(y), and soP(H)° = P(H), that isP(H) is a Lagrangian subspace.

Now assume thal(H) is a Lagrangian subspace. Then we havefarP(H), Po J(x) +
Jo P(x) = Jo P(x) = J(x), and forx € Ker(P) we havePo J(x)+ Jo P(x) = Po J(x) =
J(x). O

As a corollary of this proposition we have the following corollary.

Corollary 2.12. The subspace consisting of orthogonal projections whose images are La-
grangian subspaces is closed in the Banach space B(H).

The groudA(H;) acts onA(H) in an obvious way.
Proposition 2.13. TheactionU/(H;) x A(H) — A(H) iscontinuous.
Proof. From the relation

Py =UoPyo v, (2.7)
we have
Puy — Pvwy =UoPy o vl- VoP,o y-1
=Uo(Py—P)oU 4+ WU —-VoP,oU™?
+VoP,o(U -V,
and this formula shows the continuity of the action. O
By fixing an¢ € A(H) we have a surjective map:

pe T UH)) — A(H), U U, (2.8)

Theorem 2.14. The map (2.8) defines a principal fiber bundle with the structure group
O(¢), the group of orthogonal transformations on £, and by Kuiper’s Theorem A.litisa
trivial bundle and the space A (H) itself is also contractible.

Remark 2.15. Of course the triviality of this bundle is not true for the finite dimensional
case.

Corollary 2.16. The map o, isan open map and the topology on A(H) coincides with the
quotient topology of U(H ) by the map py.
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Theorem 2.14s proved if we have local sections of the map Here we construct local
sections in two ways. Because both of the arguments contain several interesting properties
of the spacet (H) and relating properties of projection operators.

2.2.1. First method
We begin from a lemma.

Lemma?2.17. Let P and Q betwo projection operatorson the Hilbert space H, and assume
that | P — Q| < 1.Put

(@ A=@1-PA-0) +PQ

(b)) B=1-0)(1-P) +QP,

(€©) C=1-(P-0)

d) D=3 a,(P— )%, where (1 — x)~Y2 = "% o, x" isthe Taylor expansion.

Then we have
(@) AB=BA=C,
(b) D2C =CD? =1,

(€) P(P— 0)?>=(P— 0Q)?P,Q(P=0)*=(P-0)?Q,
(d) DP = PD, DQ = QD.

Proof. All these will be proved by direct calculations. Note that all of the operatorB,
C andD are, as a result, invertible adC = CA, CB = BC andDC = CD. O

Now putW = DA, then we have the following proposition.

Proposition 2.18.

(a) Wisinvertible and the inverseis given by W—1 = BD,
(b) WQ = PW.

Hence we have W(Q(H)) = P(W(H)). Moreover if both of P and Q are orthogonal
projections, the operator W is unitary, that is the ranges of the projections P and Q are
transformed each other by a unitary operator W.

Proof. WQ = D((1 — P)(1— Q) + PQ)Q = DPQ andPW = PDA = DPA = DP((1 —
P)(1 — Q) + PQ) = DPQ. Since(DA)(BD) = DCD = 1 and(BD)(DA) = BD?A =
BC1A = 1 the operato# is invertible. Also since¥* = A*D*, if both of P and Q are
orthogonal we hav&* = BD = W1, that is,W is unitary and give a unitary equivalence
of the projections? and Q. O

Letu € A(H) andV, = {v|||P, — P.ll < 1}, an open neighborhood ¢of, whereP,
denote the orthogonal projection operator with the image

Now we describe a local sectio[jl) 1V, — U(Hy) of the mapp, : U(H;) — A(H).

For this purpose we fix a unitary operatid such thatVo(¢1) = u and define

sP Vs v Wto Vo, (2.9)
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where we denot®, = (1— (P, — P,)?)~Y2((1—P,)(1—P,) + P, P,). The continuity
of this section will be apparent from the expression.

2.2.2. Second method
Letd € A(H).

Notation 2.19. O; = {u € A(H)|unistransversalta}. Note that we meanttansversal”
by the conditionx + . = H.

The subseD, . is an open neighborhood af We denote bf?(k) the space of selfadjoint
bounded operators on the real Hilbert spac&hen we have a bijection

G, : B(,) — 0,1
defined by
Gy:B1)35A— Gu(A)={x+IAX)|x €A} € O,..

By the identificationd; = A ® C we regardA € B()) as a selfadjoint operator on the
complex Hilbert spacéi;. Let A = ffooo tdE;(A) be the spectral decomposition of the
selfadjoint operatod with the spectral measufé,(A)},cr. We define a unitary operator
Uya by

© 14 /=1t
W‘[mJ?ifiM““

then

/ 1+ V=11 dE,(A) = Uy of V14 2dE(A). (2.10)

Since [ V1+2dE,(A) (%) = (Id + A%)Y/2(1) = A, we have

Ua(h) :/ 1+ V=1 dE,(A) (1) = G, (A). (2.11)

Note thatUi = (v/—11d— A)(v/—11d+ A)~1is the Cayley transformation of the operator
A.
Now fix a unitary operato¥ such thatV(¢1) = A+, then the correspondence

sP 013> UsoldoV, (2.12)
gives a local section of the map
pe UH) — AH), U U

We must show the continuity of this sectioﬁ). This is proved by showing two facts:
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(a) the continuity of the correspondence

B> A Uy = / /i—\/_ ‘jidEl(A) c U(H))

with respect to the norm topology and, .
(b) the mapG, is an isomorphism between the spags) andO, ..

The first one follows from a more general proposition.

Proposition 2.20 ([3]). Let H be a Hilbert space (real or complex) and f be a continuous
function defined on R, then the map B(H) > A — f(A) € B(H) is continuous. Here

the operator f(A) = fﬂﬁ‘f"'” f(®) dE,(A) is defined by the spectral decomposition A =

JU, 1 dE(A) of the operator A,

Proof. Let{p,(®} (n = 1, 2,...) be polynomials which converge uniformly to the con-
tinuous functionf on an interval | N, N], then for the operata whose spectrura(A) is
contained in the openintervgl N, N), the operatop,,(A) = Z,’f;o CZAk is also expressed
as

+N
pn(A) =/N pn(0) dE(A).

So we know that{p,(A)} converges tof f(r)dE;(A) in the sense of operator norm.
The correspondencg — p,(A) is apparently continuous on the open subsplates
B(H)|o(A) C (=N, N)}in B(H) and so the maﬁ(k) > A+ f(A) € B(}) is continuous
on each such open subspdee B(H)|0(A) C (=N, N)}. Hence we have the desired
result. O

Proposition 221. Themap G, : A = G (A) = {x + JAx)|x € A} isan isomorphism
between the spaces B(1) and O, .. Hence it givesa local chart of A(H).

We prove a characterization of an orthogonal projection operator corresponding to a
Lagrangian subspace @, . .

Lemma 2.22. Let P, be an orthogonal projection operator onto a Lagrangian subspace
we A(H).Thenp € O, 1, ifandonlyif L, = P,+1—P;, = P, + P, isanisomorphism.

Proof. If L, = P, + P, is an isomorphism, then sindé = (P, + P, 1) (H) C u+ At
we know at oncex € O; 1.

Conversely let us assumeand A’ are transversal. Then there is a bounded operator
A € B() such thate = Gy (A) = {x + JA®)|x € A}, the graph of the operatat. Note
that the boundedness of the operatois proved by the closed graph theorem and the
selfadjointness oA comes from the fact that is a Lagrangian subspace. These arguments
are same with that of finite dimensional cases. Now we solve the equation

Ly(u~+J) = Pu+P)u+Jw) =x+J(y) (2.13)
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for any givenx, y € A by u andv, € A. SinceP,(u + J(v)) = x + JAKX), u + J(v) =
x4 JA®X) + J(a + IA(a)) € u+ put with an element € A, andP; 1 (u + J(v)) = J(v) =
J(y — A(x)) we have

a=x, u =x—A(a)=x—A(y)+2A2(x), v=y— A(x).

This implies that the operatdr, = P, + P, is an isomorphism ofi. Note that we have
in general Ke(P,, + P,) = Ker(P,) (N Ker(P,) = ut vt = J(uv) (see the proof
of Proposition 2.2 O

Remark 2.23. In Proposition 2.29ve will give a generalization of this property after
introducing the notion of Fredholm pair”.

Proof of Proposition 2.21. Let 1 andv be transversal with-, then
”L//, - Lv” = ”P/t - Pu” (2-14)
So we have
o0
Ly =Y (LML — L) (L
k=0
for suchw that || L, ||| P, — PIl < 1, and we have

o0
1
ILH <Y LM AP, — Puld® = 1L — :
’ ,;, g L IL P = Pl

Hence we have
1

1LY =L < IL2) —
. ' LI NP, - Pl

”Pu _Pv||~

Now by puttingx = 0 in theEq. (2.13)we have
LY = —A0) + J() (2.15)

and we have the inequality

A

1AL — AW < 1L UG)) — LTI
L2
T 1 ILNP, — Pl

Py = Pullliyll.

The last inequality shows that the mag* : O, — B(2.) is continuous.

The continuity of the maji;, : B — O, 1 is proved more easily: lgi € O, ., that
is, © andA' are transversal. Then we can express the elemeni(y) € H in two ways:

A+Atsx+J0) =a+IA@) + Jb+IAD)) € u+ ut.
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By solving this equation we have
a=(d+ A% Tx+ AGy), b=0d+ 4y — AW,
S0
Po, (& +J(3) = (Id + A7 + AG) + A + A7 i + A()). (2.16)
From this expression of the projecti®s, (4) and by a standard argument we have
PG, a) — Pa, )|l = NUAI IBIDIIA — Bl.

Here we denote by(s, ) a polynomial of degree three of two variables and note that for
anyA e Boy|(d + A2)~1| < 1.

Consequently we have proved both of the continuities of the@agnd its inverse&; ?,
in other words, we have proved that the m@pgives a local chart of the spaeg H). O

Remark 2.24. From the proof above we see easily that the idaps not isometric.

Proof of Theorem 2.14. Itwill be clearthat a unitary operator which preserves the subspace
¢+ comes from an orthogonal transformationfoms the complexification of it. So we have
provedTheorem 2.14ogether with the help of local sectio(&9) and (2.12) O

Corollary 2.25. The Lagrangian—-Grassmanhnian A(H) isan infinite dimensional differen-
tiable manifold modeled on the Banach space of bounded selfadjoint operators.

Proof. Since we have an open coverifi@; 1 }xcam Of the Lagrangian—Grassmannian

A(H), each of which is isomorphic to a Banach sp&‘&), it will be enough to show
the coordinate transformations of this covering aldférentiable’ in a suitable sense. Of
course the Banach spadsé.) are all isomorphic to a typical one.

Let Gy : B(A) — 0,1 be the map irProposition 2.21then from the expression of

Pa, 4 (see(2.16) we know the compositions of maps frabii)) to B(H)
B() 3 A Gi(A) = Pg, ) > Pa,a) + Pyi € B(H)

is a “differentiable” map. .
If Gi(A) € O,1, thatis,G,(A) = G,(B) with an operatoB € B(u), then from the
relation (se€2.15)

(PG, + P,1) ) = (Pg, ) + Pu) HU() = —BO) + J3)(y € ),

it will be apparent that the coordinate transformatd})p1 0Gy: A B=J—(Pg,a +
PML)_]' o J is a differentiable map between open sets in Banach sfﬁac)eandfs’(u). O

2.3. Fredholm pairs and Fredholm operators

Theorem 2.14ays that in the infinite dimension we must work in a smaller space than the
whole space of Lagrangian subspade$/) to obtain a similar quantity to the Maslov index
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in the finite dimensional case. In this section we introduce a notion, so called, Fredholm
pairs and discuss relations of Fredholm operators and Fredholn{22jrs

Let ¢1 and ¢, be two closed subspaces#h then first of all, we recall the definition of
¢1 and{, being a Fredholm pair.

Definition 2.26. We call that two closed subspaagsand?; is a Fredholm pair, if

(a) dim(es () £2) isfinite,
(b) {1+ €2 isclosed and of finite codimensionalih

We give a relation of two notions “Fredholm pair” and “Fredholm operator”.

Proposition 2.27. Let P, : H — H bethe orthogonal projection operator with the image
P1(H) = ef. Then (¢1, £2) isaFredholmpair, if and only if, the restriction Py|¢, of Py to
the space ¢» is a Fredholm operator, and

ind Py, = dim KerPy |, — dimés- /Py (€2) = dim (zl ﬂzz) — dim(H/((1 + €2)).
(2.17)

Proof. Inthe algebraic sense we have KBt|¢,) = ¢1( ) €2andH/(¢1+4£2) = Ef/Pl(ez)
by the definition of the operatd?|.,. Also we have the closedness @f+ ¢ and that

P1le, (£2) is equivalent (a little bit general fact is proved in the negtmma 2.28. These
prove the equivalence and we hg@el7) O

Lemma228. Let T : H — H’ be a bounded surjective operator from a Hilbert space
H to a Hilbert space H' and let L be a closed subspace containing Ker(7). Then T(L) is
closed.

Proof. Letx be the orthogonal projection operatorfirwith the image= =(H) = Ker(7),
and letT be an N isomorphism betweégh andH' @ Ker(7) defined byl (x) = T(x) ® ().
Thenwe haveT)(L) is a closed subspace and we know (ﬁa(L) T(L) @ Ker(T). This
implies the closeness G{L) in H'. O

Next we generalizeemma 2.22by which we give a characterization of two Lagrangian
subspaces being a Fredholm pair.

Proposition 2.29. Let u, v € A(H) andlet P,, (resp. P,) denote the orthogonal projection
operator of H onto . (resp. v). Then P, + P, is a Fredholm operator, if and only if (u, v)
isa Fredholm pair.

Proof. First we show
Ker(P,, + P,) = u* v+

(see the end of the proof abmma 2.22. SinceP, (x) + P, (x) = 0 implies that
(%, Pu(®) = (x, =Pu() = =IIPy(®) 1> = 1P (01
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HenceP, (x) = P,(x) = 0, which shows that
Ker(Py + Py) = (vt = JGo) [ J0) = Ju | v) = (u+ )" (2.18)

Now let P, + P, be a Fredholm operator. Then, sing@, + P,)(H) C w + v, and
Im(P, + P,) is closed and of finite codimensional, go+ v must be also closed and
of finite codimensional. Hence together with the isomorphi2ri8)we have proved that
(i, v) is a Fredholm pair.

Nextassume thdj, v) is a Fredholm pair, and we pro®, + P, is a Fredholm operator.

FromProposition 2.27ve haveP, (v) (resp.P,(u1)) is a finite codimensional closed
subspace i (resp.v). Since din{u () v) < oo, in the direct sumu @ v the subspace
P H®P,(nh)+H{xd—x|x € u () v}isstill closed. Consequently the subspaggv)+
P,(ut) is closed and finite codimensional in+ v. Hence the imagéP,, + P,)(H) is a
finite codimensional closed subspaceir- v, because it includes the finite codimensional
closed subspac@ﬂ(uL) + P,(uh). In fact it coincides withu + v, since it is closed
and(P,, + P,)(H)° = () v. Now we have proved that K&P, + P,) = J(u()v) and
Im(P,, + P,) = n + v, which shows the operat@,, + P, is a Fredholm operator. O

2.4. Fredholm-Lagrangian—Grassmannian

We fix a Lagrangian subspageand introduce a subspace 4f H), we call,Fredholm-
Lagrangian—Grassmannian with respect to.

Definition 2.30. The Fredholm-Lagrangian—-Grassmanniantbfvith respect to a La-
grangian subspaceis defined as

FA(H) = {u € A(H)|(u, 1) isaFredholm pair (2.19)

Definition 2.31. We call the subset
M, (H) = { e Far(lu ()2 # (0} (2:20)

the Maslov cycle with respect ta

Notation 2.32. FA(H) = {0 € FA,(H)|0istransversalta) = FA,(H) \ M, (H)
(= 0O,,, seeNotation 2.19.

Remark 2.33.

(a) In the finite dimensional case, the subd¥&t(H) is a singular cycle whose homology
class is a generator of the codimension one homology gl +1)/2)—1(A(H), Z),
where we put dinfl = 2n.

(b) Aswe proved irProposition 2.21he subsef-A; (H) \ M (H) = ]-‘A&O)(H) is isomor-
phic to the space of bounded selfadjoint operators-bn

First we study how the Fredholm—-Lagrangian—Grassmanfian(H) depends on the
spacei. In the finite dimensional case, it is clear thaf, (H) = A(H). In the infinite
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dimension,F A, (H) is an open subset of (H). Openness follows frorRropositions C.2
and 2.29and it cannot include itself. However we can prove the following proposition.

Proposition 2.34. A can be approximated by a sequencein FA; (H), i.e, A € 0FA;(H)
(= the boundary).

Proof. Let A : . — X be a bounded selfadjoint operator and assumeAhatan isomor-
phism. Then for alk > 0, the Lagrangian subspace

Gea ={x+eJAX)|x € A}

is transversal with both of andA*. SinceeA converges to 0 infi(k) whene — 0, we
know that the orthogonal projection operafs, , onto the graph of - J o A converges to
P,.. Hence we have

A € FA,(H) \ FA(H). O (2.21)

Let A andu in A(H) and assume that
uw=URX)with U =1d + K € U(H;) is of the form Id+ compact operator, (2.22)

then the following proposition holds.

Proposition 2.35.
FA(H) = FA(H).

Proof. By Proposition 2.29v € FA; (H) if and only if P, + P, is a Fredholm operator.
From the assumptior®, + P, = Pyo) + Py =U o P, o U L+ P, = (Id+ K) o Py o
(Id+ K*) + P, = P, + P, + compact operator. Henceiife FA, (H), thenv € FA, (H).
Since(ld + K)~! = Id + K*, by the same way we havEA , (H) C FA; (H). O

Definition 2.36. We denote bies(H ) the subgroup dff( H ;) consisting of such operators
that

Ures(Hy) = {Id + compact operatér

Corollary 2.37. The group Ures(H;) acts on FA, (H) and Ures(Hj)(A) C 3(FA; (H)),
that is, the orbit of the element 4 is also included in the boundary of FA; (H).

As a special case of the relati@h22)we introduce an equivalence relation on the space
A(H).
Definition 2.38. We callA andu € A(H) almost coincide, if
dim(/(x + p)) < 400
and denote
A,

when two Lagrangian subspaceandu almost coincide.



284 K. Furutani / Journal of Geometry and Physics 51 (2004) 269-331
It will be easy to prove that this is in fact an equivalence relation. Note that in this case
dim(A /(A + ) = dim(u/(A + ),

and in fact we have the following proposition.

Proposition 2.39. Let A ~ pu, then there exists a unitary operator U of the foom U =
Id 4+ compact operatosuch that u = U(%).

Proof. Sinceix andu are Lagrangian subspaces, the sum of the complex subspaces spanned
by A w andx (A w)* is an orthogonal sum aff;, and so(x (A )1 ® C =
rN*N w)H) ® Cin H;. Hence we can find such an unitary operdtathat is identity

on the subspac@. (| 1) ® C. Hence we can tak& = Id + K with K being a finite rank
operator. O

Proposition 2.40. Let A € A(H) andlet W C A beafinite codimensional closed subspace
in 1. Then for u € A(H), the pair (», n) is a Fredholm pair, if and only iftW, n) is a
Fredholm pair.

We denote byFAw (H)
FAw(H) = {n € A(H)|(W, n)isaFredholm pajr (2.23)

Proof of Proposition 2.40. We proveFAy (H) = FA; (H).
Let u € FAw(H). Then, since the map

(:NV) (#1) = 21w
is injective, we have
dim (2 () = dimG/ W) + dim (W (Y1)
and the spack + u is a finite dimensional extension of the closed subsp#een.. Hence

A andu is a Fredholm pair.
Now letu € FA, (H). In the short exact sequence

0— ,\ﬂu—’;x@M—iwru—m,
wherej(a) =a® —a € H® H andt(a ® b) = a + b, we have
r‘l(W+u)=W@/L+j()»ﬂu>.

HenceW + u must be closed in + 1, so is inH. Also we have dinW (| 4 < co. These
proves the coincidencEAw (H) = FA, (H). O

Corollary 2.41. If A ~ u, then FA,(H) = FA,(H).
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Proof. By Proposition 2.3%ve already know this, but also by putting = A (|« in the
proof of Proposition 2.4@ve can prove the coincidence. O

Remark 2.42. Since in the proof of the above proposition we did not use any particular
properties of Lagrangian subspaces, the above coincidence holds for any Fredholm pair
(L1, L) and(L2, L), whereL; is a finite codimensional closed subspacé. in

Finally we note the following proposition.

Proposition 2.43. We have an open covering FA, (H) = U,m)\ O,., and each O, isopen
densein FA; (H).Hence(:2;, O,, (each u; ~ 1) isnotempty. Inother words, for any given
countable number of Lagrangian subspaces {u;};°, such that each of which is equivalent
to a fixed Lagrangian subspace A, there exists a Lagrangian subspace which istransversal
to each u;.

2.5. Souriau map and the universal Maslov cycle

When we fix a. € A(H) then we have an identification
Hi=A®A =A@ A ZAQC, x+ly—>x®@1+y®+/—1 (2.24)
We denote by, the complex conjugation iff; under this identification:
nx+Jy) =x—J@), xyei
It will be easy to show the following relation:
7, = 2P, —Id. (2.25)
Any U € U(Hjy) can be expressed as
U=X++/-1Y
with X, Y € B()) in such a way that
Ux®1+y®vV-1) = (Xx) - Y()) ® 1+ (X(3) + ¥(x)) ® V-1
=X(x) —Y(y) + J(X(y) + Y(x),
andX, Y satisfy the relations:
X'y =Y'X, 'YX = XY,
X'X+Y'Y=1d, XX +'YY = Id.
For 1 € A(H) we denote by, an anti-group isomorphistd(H;) — U(H ;) defined by
0, (U)=1,0U%015, (2.26)
thend, (U) =X + /—1'Y.
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Note that ifY # 0, 6, (U) # 'U, where we meafU is a transposed operator when we
regardU as a real linear operator.
Then we have

(U € UH))|6,(U) = U™} = O(1)(= orthogonal group oR). (2.27)

Hencethe mapl(H;) — U(H;), U — U o6, (U) induces a continuous map (sgerollary
2.1

Si T A(H) — U(H)), w= Ul — Se(w) = U o6 (U). (2.28)

We call this map asSouriau map” henceforth.
From the relatior{2.25)we have an expression of the Souriau map in terms of projection
operators corresponding to Lagrangian subspaces.

Proposition 2.44. S¢(u1) = (Id — 2P,)(2P; — Id) = —7,, o 1¢.
Corollary 2.45. Let A, i, v be three Lagrangian subspaces, then
Sp() o Si(n) = =S (v). (2.29)
From the relation§2.25), (2.26)andProposition 2.44ve have the following proposition.

Proposition 2.46. The maps

U(Hj) x A(H) — U(H)),

(€, U) > Uoby(U) =Uo (2P, —1d) o U* o (2P, — Id), (2.30)
and

A(H) x A(H) — U(H)), (€, ) = Se(w) = (Id — 2P,) (2P, — Id) (2.31)

are continuous.

By Proposition 2.44
U o Se() o U* = Sy (U(w)), (2.32)
that is, the following diagram is commutative.

Proposition 2.47.

A(H) = U(Hy)

v| | 4o

A(H) o U(Hy). (2.33)

In particular, wherU € Ues(H ) we have a commutative diagram.
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Proposition 2.48.
Su—1(e)
FA(H) = FAy-1y(H) ——% U(H;)

0| [

FA(H) T U(Hy). (2.34)

Here we remark the adjoint operator of an anti-linear operatoff le¢ an anti-linear
operator on a complex Hilbert spaég with a Hermitian inner producte, e), then the
adjoint operato* is defined by the relatio(7(z), w) = (T*(w), z) (z, w € H). Then
T* is again an anti-linear operator and we have a composition formula with a linear or
anti-linear operatof.: (T o L)* = L* o T*.

Now T, is anti-linear and we have by a direct calculation

T =1, thatis(ti(z), w); = (t.(w), 2),.

From this facﬂf = Id, in other wordsg,, is an anti-linear involution o8(H ).
By the above remark and the expression of the Souriau PEgPOsition 2.4%we have
the following proposition.

Proposition 2.49.
S ()" = 8u(2). (2.35)

We call the restriction of the Souriau map to FA; (H) also Souriau map always.
Now for a fixedx, we putld; (Hy) = p, “(FAx(H)), wherep; : U(H;) — FA;(H),
pi(U) = UGH).

Proposition 2.50. Let U € U(H;),then U = X + /—1Y € U, (Hy), if and only if,
X € B()) isa Fredholm operator.

Proof. LetU € U(H;), and putw = U(AL). Then the inclusion mapt — H = 1 + At
induces the isomorphism

O A1) /4 ) AL/ I(X o)) = A5/ IX ) Z A/ X D).
Also
ANUGMY) = Ker X.

These shows the assertions. O

Let u € FA,(H) andU(A') = u, then by the definition of the Souriau m&p(u) =
U o 6, (U) and from abovéroposition 2.50we have the following proposition.

Proposition 2.51.
Uo6,(U)+1d (2.36)

is a Fredholm operator.
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Proof. LetU = X + +/—1Y, with X, Y € O(A), then
Uo6,(U)+1d =2X 06, (U),
and this shows the Fredholmness of the oper&tem, (U) + Id. O

Let u € A(H), then from the relation that an element x + J(y) (x, y € A) isiin w if
and only if—z = W, (7. (z)), we have

Ker(W, +1d) = (uN2) @ C = (uNA) & J(uNA). (2.37)

Hence

Proposition 2.52. For any u € FA; (H) andany U € U, (H;) with u = U(L)

dimg (e N 1) = dime Ker(W,, + 1d).

Let us now consider the space

Ur(Hy) = {U € U(H;)|U + Idis a Fredholm operatpr (2.38)
and a subset

U (Hy) = {U € Ur(H,)IKer(U + 1d) # {0}}, (2.39)
which by the precedin@roposition 2.52ve can regard as a kind of the universal Maslov
cycle.
Proposition 2.53. For any 4, S; XU (Hy)) = D, (H).

Now we state the fundamental property for discussing the Maslov index in the infinite
dimension.
Theorem 2.54.

(a) m1(FAL(H)) = Z,
(b) mUF(Hy)) = Z,
(c) Theinduced map

()« mU(FAL(H)) — m1(Ur(Hy))

is an isomor phism.

We give the proof of this theorem in the next subsection by the method of the finite
dimensional reduction.

2.6. Proof of Theorem 1.54(a)

Notation 2.55.

(a) Leth € A(H). We denote by Sy (1) the set of all closed subspad&sc A (W # 1)
of finite codimensions.
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(b) Let W be a closed isotropic subspace such that Witd W < oco. We denote by
A(W, H) the set of Lagrangian subspacesbfvhich containgV.

Theorem 2.56. Let L € A(H) and W € Subjin(1):
(a) Theinclusions
FAY = {0 € FALHONW = (0}} — FA,(H),
define an isomorphism
ind — lim TUFAY (H) > mu(FAL(H)).
(b) Thereisa natural isomorphism
TUFAY (H) > T (AW /W) = 7
for each W € Suhjn (1).

By combining (a) and (b) we obtain Theorem 2.5¢).

The proof of Theorem 2.56@will follow from two Propositions below which will be of
independent interest. First we shall prove the following proposition.

Proposition 2.57. Let K C FA,(H) be a compact subset. Then there existsa W €
Subin(A) suchthat u N W = {0} for all u € K.

Proof. Letuo € K. The sum of the orthogonal projectioRs+ P, is a Fredholm operator
by Proposition 2.2%nd we have

Ker(P;. + Pug) = J(A N uo).
Let
h= AN po)™ =2+ N URN pe)b).

Then the operatdP, + P, is injective onk and its range. + ug is closed. Hence there
exists an open neighborhoddof o in FA; (H) such thatP, 4 P, is injective onh for

all u € KN U. SinceK compact, a finite set/y, ... , Uy of such neighborhoods covers
the whole ofK. Then
N
W = ﬂ((mw)l N 1)
j=1
satisfies our requirement for suitable choicegpfe U; N K. a

The next proposition gives us a property/Bfi, (H) relating with the finite dimensional
reduction of the Maslov index.
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Proposition 2.58. Let W € Suhj, (1), then the mapping

pw  FAYH) — AW /W), > (wNW°) + W)/ W

defines a fiber bundle.
The proof of this proposition is given by proving two lemmas below.

Lemma 2.59.

(a) Let H, A, W be as above and let & € A(W, H), i.e, 0 is a Lagrangian subspace
including W. Then

Up = {1 € FAY ()| 6 = (O}
isan open subset of the total space FA 33) (H) and we have

U Ue=FaP ).
e A(W, H)
(b) Letd =6/W € A(W°/W). Then the set
Uz = (€ € AW/ W)[€N6 = {0}

isan open subset of the Lagrangian—Grassmannian manifold A(W°/ W) and theunion
of all such subsets covers A(W°/W).

(b) The mapping
pw :Ug — Up
is surjective.
Proof. Sinceu € Uy is transversal witd, openness o/, follows from Lemma 2.22For
agivenu € ]-‘A%?)(H) one finds easily &8 = W + L € A(H) with 8 N i = {0}, by taking

a suitable Lagrangian subspacén (A N W) @ J(» N W1). That gives the claimed open
covering and (b) and (c) can be seen easily. O

Again let W € Suhij,(A) andd € FA;(H), ® > W and we decompos# into four
mutually orthogonal subspaces:

H=0+JO) =W-no+ W+ JWLno) + Jw). (2.40)
Lemma 2.60. Let u € Uy. Then there exist linear mappings

a:JWtne — wtne
and

g JWtne - w
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such that each z € . N W9 can be written in the form

z=x+a(kx) +gx) with x e JW o).

Proof. Sincepu intersects) transversally, there is a map : J(0) — 6 such thatd o J
selfadjoint ord andu = {u + Aulu € J(0)}. We decompose = x + y with x € J(WL N
0) andy e J(W) according to the decomposition dfo) in (2.40) With regard of that
decomposition, the mapping can be written as a 2 matrix

a b
g d)
More explicitly, we have
Au = a(x) + b(y) + g(x) +d(y),

where

a:JWtne — wtne, b:J(W) — Wtno,
g JWtne > w, d: JW) —> W.

We notice that
ao J, andd o J are selfadjointand’(bo J) = go J. (2.41)
Now, letz € u N WO. It can be written as
z=u+Au=x+y+akx) +by + gk) +dQ).
From the decompositio2.40)it follows that the componentin J(W) must vanish. So

z=x+a(x)+ gx). a

Corollary 2.61. Let A, W, 6 beasabove. Let u = {u + Aulu € J(0)} € Uy with

a b
A =
(8 d)
with respect to the decompositions J(6) = J(WL- N 6) + J(W)andd = W- N6+ W. As
before, we identify W°/ W with (WL N 6) + J(WL N 6). Then
ow () = {x + a(x)|x € W N6} (2.42)
In particular, two u, u’ € Uy belong to the same fiber, i.e., pw (1) = pw(r'), if and only

if,a=d.

Now we proveProposition 2.58
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Proof. We define a local trivialization oty;:
UyxrF 5 Uy
TN\ L pw
l (2.43)
Here, denotes the projection onto the first component. We take
F = BUJW), W N 6) + Ba(J(W), W),

whereB(J(W), W-n#) denotes the vector space of bounded operators fidvhto W6
and B (J(W), W) the vector space of bounded operators fréi) to W each of which
operator becomes a selfadjoint operatoMoby combing withJ. For a fixed point. € Uj
and a point in the fibetb, d) € F, we define

«(L: b, g) = {u+Au|A - (“L b) ue J(@)}
g d

with the decompositiod(6) = J(WN6)+ J(W)}. The operatoa; : J(W-NO) — WLno
with a;, o J selfadjoint is uniquely determined by the condition

L={x+a.(x)|xe JW-Nno)).

As a consequence, the majs surjective and injective. By the definition @f from L we
have the commutativity of the diagraf®.43) O

Before provingTheorem 2.56ve remark the a commutative diagrgth44)below.
Let us consider two spacég W’ € Subj, (L) with W c W. So

FAw(H) = FAw (H) = FAy(H)
and

FAY < FAQ(H) C FA(H).
Recall thatA (W, H) denotes the set of Lagrangian subspaced @fhich containW, and
then this space is isomorphic with the Lagrangian—Grassmannigéft / W) in an obvious
way:

AW, H— A(W°/W), 60— 6/ W,

and a corresponding isomorphism #&¥. Now letC : I — FA; (H) be a curve which is
transversal tav. So, it gives us the curn€ : I — ]—‘A(VS)(H). Then we have the following
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commutative diagram:

I —“ . FANH)

‘| To

FAGH) —— FAH)

ﬂu'l lpw’

AWe /W) —— A(W'° /W)

AW, H) —— AW' H).
( ) By vy ( ) (2.44)

Proof of Theorem 2.56. By Proposition 2.57it will not be difficult to see the mapping
ind-lim 1 (FAY' () — 71(FA,(H)

is naturally isomorphic (and also it is isomorphic for all homotopy groups, but we do not
treat with higher homotopy groups).

To see (b), we just notice that the mdpg - in the above commutative diagram gives us
isomorphisms of their fundamental groyfi$ together with the help of the exact sequence

(0} = ma(F) — m(FAY) (H) o T (W?/ W) — mo(F) = {0}. O

2.7. Proof of Theorem 1.54(b) and (c)

In this section first we explain the spalde(H;) in the framework of the complexified
symplectic Hilbert spaceéPfoposition 2.6¥tand give a proof of the isomorphisms.

Proposition 2.62. m1(FA,(H) —> (5., mUzr(H))) = L.

Then these will give a proof of 2.54(b)and (c).

Let H be a separable symplectic Hilbert space with compatible symplecticdgram
inner product(e, ) and an almost complex structufe w(x, y) = (J(x), y), J2 = —Id.
The complexificatiorH ® C of the real Hilbert space is installed with the Hermitian inner
product as usual and we denote¥ (H ® C) the space of complex Lagrangian subspaces
in H® C:

AC(H ® C) = {£|¢isacomplex subspace such that= J(0))}.

Then a subgroup of the unitary operatorgd® C, we denote it by/(H ® C), consisting
of those operator® thatU(¢)* = J(U(¢)) for any¢ € AC(H @ C) acts onA®(H @ C)
transitively. This condition fot/ € Up(H ® C) is equivalent to say that it commutes with
the complexified almost complex structure
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Taking the complexification ok € A(H) gives us a natural embedding(H) —
AC(H ® ©), and its restriction taFA; (H) has the image ir]?-‘A%dH ® ©), a sub-
space ofA®(H ® C) consisting of those subspaces which are Fredholm pairsivetiC.

We denote this map bgC.

Whenwe consider an operaidre U(H,) as areal operator and take its complexification,
we denote it byUC, thenUC is in Up(H ® C) and we have/(n) ® C = US(n ® ©),
u € A(H), and the following diagram is commutative:

U(H;) =5 uH @)

A(H) —— AY(H ). (2.45)
Let Ex = {z € H ® C|J(z) = £+/—1z}, then
HRC=E, ®E_

is an orthogonal decomposition &f ® C. If U € Up(H ® C), thenU(E+) = E+. Hence
we have an isomorphism

Uo(H Q@ C) = UEL) x UE-),

wherel/(E,) denotes the group of unitary operators Br, and so on. Also the space
AC(H ® C) is identified with the space of graphs of unitary operatérs U(E., E_),
U:Ef— E_.

LetR: Hy — Ey,u— u®l—Ju)®v/—1andt: Hy — E_,u — u®1+Ju)®/—1,
be an isomorphism and an anti-isomorphism, respectively, then, the following diagram is
commutative.

Lemma 2.63.

H; —2— H,

4

E. —— FE_,
Tx

where 7, isthe complex conjugation defined through the identification H; = A ® C, and
the graph of the unitary operator 7; iSA @ C,A ® C = {x + T, (x)|x € E4}.

Now we have the following proposition.
Proposition 2.64. Let @, : Ur(H;) — ]-‘A%C(H ® C) be a map defined by

@, (V) = thegraph of theunitary operator — o Vo1, 0 81
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(e U(E4, E_)). Then &, isan isomorphism and the diagram is commutative:

.7:1\)\<H)

FASec(H ®C)

)
Sy
Ur(H,). (2.46)

Proof. It will be enough to prove the commutativity of the diagram. Lete U, (Hy).
SinceUC |, can be identified with/ through the mag andt, respectively, and we have
UCOL®C) = {(Ux)—UoTh(x)|x € E4} = {x—UoT, oU L(x)|x € E,}. By the above
lemmatoU o T)LOU_lOﬁ_l = EoUo‘L’;LoU_lo‘L')Lo‘L';L o 1= toUo0,(U)or,, oR 1
which gives the commutativity of the diagram. O

Let W be a closed finite codimensional subspacegrC and we denote hgm@ (H®C)
a subspace OFA%C(H ® C) consisting of those subspadeshich do not intersect with
W except{0}. Let Hy = J(WW+ N (1 ® C)) + W N (A ® C), andA(Hy) be the similar
space asA(H ® C) (note thatHy is invariant under the mapg). A(Hy) is identified
with the space of unitary operators & N (1 ® C). Let y : ]-'AE,?(H RC)>¢¢ —
ENUIWENA®C)+1®C)+ W) N WL € A(Hy), and thenry : FAY (H® C) —
A(Hy) is afiber bundle with the contractible fiber. A typical fibem;vl(J(A RCNWL))
isisomorphictothe spad?_é(W) x B(W, A\@ CNW+=), whereB(W) is the space of selfadjoint
operators orW and B(W, W N (A ® C)) is the space of bounded operators fréinto
WLN((®C). Unfortunately for any pair of such subspadésandW, satisfyingy ¢ W»
there are no natural map(Hw,) — A(Hw,) which makes the diagram

FAQ(H®C) —— FAY (H®C)

J/’WWZZ l’/l'vn

A(HVV‘_)) - A(HVVL)

commutative. However if we define a map : A(Hy) — ]—'A%?(H ® C) by sy(®) =
£+ J(W), thenmy o sy = Id and we have the following commutative diagram:

A(Hw,) S A(Iw,)

iwy,wy

l SWy l SWy

FAQH®C) —— FAY (H®C)

where the mapw, w, : A(Hw,) — A(Hw,) is defined byiw, w,(¢) = € + J(W2 N Wib).
Then for any compact subsktin ]-‘A%C(H@(C) we can find such a finite codimensional

subspac# in A@C thatforanyin K,¢nW = {0}, sol J ]—'A%?(H@(C) = fAf®C(H®C).

Hence ind-limy_ o) mx(FAY (H ® ©)) = m(Ur(Hy)) = ind-limw_ o 7 (A(Hw)).
These show that the homotopy groupsfe{ H;) coincide with the stable homotopy groups



296 K. Furutani / Journal of Geometry and Physics 51 (2004) 269-331

of the unitary group, which together gives the prooPebposition 2.62and finally gives
us a proof ofTheorem 2.5¢) and (c).

3. Madov index in the infinite dimension

In the last section we proved that the fundamental group of the Fredholm-Lagrangian—
Grassmannian is isomorphic ¥ So in this section we define an integer, so called, the
Maslov index, for arbitrary continuous paths in the Fredholm—Lagrangian—Grassmannian
FA,(H). In particular it gives us an explicit isomorphism between the fundamental group
of the Fredholm—-Lagrangian—Grassmannianzand/e base on a spectral property of Fred-
holm operators to define tiidaslovindex, so that our method is valid for both of finite and
infinite dimensional cases.

3.1. Maslov index for continuous paths

Let
d:1=10,1]— Ur(Hy), t— d@)

be a continuous path tr(H ). First we prove the following lemma.

Lemma 3.1. There exist a partition0 =19 < t1 < --- < ty = 1 of theinterval | and

positive numberse; (j =1, ..., N)with0 < ¢; < & such that
eV =1£e) ¢ 5d(r) 3.1)
and
> dimKer(d() — €79) < o0 (3.2)
|0]<e;

fort;j_1 <t<t;.
Note herep(d(r)) denotes the resolvent set of the operat@y.

Proof. Sinced(r)+1d is a Fredholm operator, for eack I = [0, 1] we can find a positive
numberg; > 0 such that

(e/72m 910 < j6] < &/} C p(d(1)),
because-1 is an isolated eigenvalue dfr) with finite multiplicity. So there exist positive
numbersa,i > 0 such that the projection operatdy defined by

1

Pp=—— —d(s)) L du, 3.3
on/ 1 |u+l|:8,(u (s))" " du (3.3)
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has the constant rank equal to dim Kar) + 1d) for s € [t — 8, ,  + 8], becausd Py} is
a norm continuous family:

dim Py(H;) = dimKerd(®) +1d), se[t—35, ,t+8 ] (3.4)

Note that the continuity of the family of projection operat¢fs} is proved by using the
“resolvent equation”:

@ —d) ™=@ —d@) ™t = @ —d)"Hdes) — d@) @ — d@) L.

The continuity of{d(z)} is reflected by this equation to the continuity of the fanjiiy}.
Hence we have an open coverifi@ — 8, , ¢ + 8;)};c; of the intervall and positive
numbers(s;},c; such that fos € [t — 8, ¢ + 8]

3" dimKer(d(s) — /~27+%) = dim Ker(d(») + Id),

10]=<er
eV =10 ¢ Hd(s)).
Now we can choose an enough number of poim#\;gl satisfying following properties:
O=s9 <51 <--- <sy_1 = 1suchthat
Si_1 < 8 — 8;1,,
sici+ 8 <,
— 8 <si_1+ 8?{' .

Here if necessary, we replaﬁé by a smaller one (but then the number of the poinsts
will increase). Finally we define the point(k = , N) in such a way that

to=s0=0, =2, t2=S1+55+1, t3=S2+8;r2,---,

IN1=sN2+68), . tn=sy1=1

and on the each intervaf[ 1, 7] we take the positive numbey, = &,,. Then we have a
desired partition of the intervdland positive numbers satisfyirg.1) and (3.2) O

We now define a quantity, we call itihitary Maslov index”, and denote by ({d(¢)}) of
a continuous curvéd(n},e; C Ur(Hy).

Definition 3.2. Let {t,}?’ be the partition of the interval and{e}N 1 positive numbers
satisfying(3.1) and (3. Z)as in the above lemma, then we define

N

Md®D) = D k(1) 8)) — k(tj-1, &))) (3.5)

J=1
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with
k(t, €)) = Z dim Ker(d () — €+

0<0<e¢;

fort; 1 <t <t
In order that the definition has a meaning, we need to prove the following proposition.

Proposition 3.3. The definition of the quantity M ({d(¢)}) depend neither on the choices of
the partition {z j}j?’zo of theinterval | nor on the positive numbers {¢ j}y:l satisfying (3.1)
and (3.2)

This follows from the following lemma: Ie{ttj}f’zo be the partition of the intervdl and
{Ej}j."zl another positive numbers satisfyi(®1) and (3.2)

Lemma 3.4. Thetwo integers coincide definedin (3.5)onein terms of the partition {t{,}?’zo
and positive numbers {ej}?’:l and other in terms of the “ same partition” {lj};-v:O and “ dif-
ferent positive numbers’ {& j}j.\’zl.

Proof. Since both of € ~1+¢) and &/~1+&) ¢ p(c(r)) on each small intervat [_1, 1],
the difference of the dimensiokg, &) —k(z, €;) is constant on the interval[ 1, ;]. Hence
we have

k(tj, Sj) — k(l‘j_l, é‘j) = k([j, g‘J) — k(tj—l, gj)a
which proves the lemma. O

Proof of Proposition of 3.3. By adding a suitable number of points both in the partitions
{t;} and{7;}, we may assume that_1 < 7; < ¢; for eachj. Then fromLemma 3.4ve have

k(. &) — k(tj-1, €}), (3.6)
=k(tj, ej) —k(tj, &) +k(j, &) — k(tj_1, &), (3.7)
= k(t), Ej1) — k(@}, Ej41) + k1), &) — k(tj-1, ), (3.8)
which gives us the coincidence of the two integers by ad{®@) and (3.8with respect
to j. O
Notation 3.5.

(@) Let{d1()}seo,1) and {d2(¥)}:c[0,17 be continuous curves with the relatioh(l) =
d2(0), then we denote the catenation of these two curves yd;:

di(30) for

0
dyxd =
(A1 + G2) () dp(2t — 1) for 3
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(b) The curve—d denotes the curve defined byd(r) = d(1—1),t € I.
This unitary Maslov index has the following properties.

Theorem 3.6.

(a) Additivity under the catenation of the paths, and
(b) Modulo sign and additive constants, it is only a homotopy invariant of curves in
Ur(H ) with fixed endpoints and distinguishes the homotopy classes.

Proof. (a) The additivity follows from the very definition of the quantM/{d(z)}.
(b) Let{w(s, N}.nerx1 C Ur(Hy) be a continuous two-parameter family. By the similar
continuity arguments for the projection operad:3) in the proof ofLemma 3.1 for each
s € I there are a positive numbey > 0, the partition{z;} of the interval and the positive
numberge;} such tha(3.1) and (3.2hold for¢;_; <t <t; and|s’ — 5| < ¢;:
eV € p(w(s', 1)
and

Z dim Ker(w(s', 1) — €9y < co.

1Bl=<e;

So on the each small rectangle [, 7;] x [s, s +¢5], v € [s, 5 + ¢5]

> dimKerw(s + v, 1;) =€) — 3" dim Ker(w(s + v, tj_1) — )

0<f<e; 0<0<e;
+ ) dimKerw(s + v, ;1) — &™) — 3" dim Ker(w(s, 1j_1) — &)
0<6<e¢; 0<6<e;
= Y dimKerw(s+v,1)) — €7 — 3" dim Ker(w(s, 1)) — €7+
0<6<e; 0<6<e;
+ Z dim Ker(w(s, ;) — €@+9) — Z dim Ker(w(s, j_1) — €79),
0<b<e; 0<b<e;

By adding above equalities with respectjtave have in general (locally with respect to the
parametes)

M{wW(s + v, O}o<v<e,) + M{W(s + ¢5. D}ier)
= M{W(s, D}rer) + M(W(s + v, D}o<v<c,)s
and then on the rectanglex 1
M{w(s, O}ser) + M(W(L, D}rer) = M{W(O, D}ier) + M{W(s, D}ser)-

Now here we assume that(s,0) = w(0,0) andw(s,1) = w(0,1) (s € I), hence
M ({w(O, H}er) = M({wW(Z, 1)}:), and this shows the homotopy invariance of the integer
M{w®}).



300 K. Furutani / Journal of Geometry and Physics 51 (2004) 269-331

The uniqueness (mod additive constant and signature) follows from the factthat
UFr(H))) = Z. o

The spacé/£(Hj) is closed under the adjoint operation, so we have the following propo-
sition.

Proposition 3.7. M({w(®)}) = —M ({w(®)*}).

Using this “unitary Maslov index” we give a functional analytic definition of the infinite
version of theMaslov index for arbitrary continuous paths in the Fredholm—Lagrangian—
Grassmannian.

Letu : I — FA,(H) be a continuous path ifA; (H) (so thatS,, o u is a continuous
path inl{r(Hy)).

Definition 3.8. We define the Maslov index of the cur{yie (r)} with respect to. by
Mas({n(®}, 1) = M{Sr(n(0))}).

By Theorem 2.54the Maslov index inherits the all properties of the “unitary Maslov
index”.

Inthe case thaF A, (H) = FA,(H), butx # u, then Maslov cycle®t; (H) anddt, (H)
do not coincide. Hence Maslov indexes for a path with respe®ttoH) and9t,, (H) will
not coincide in general. However for loops, as in the finite dimensional case we have the
following proposition.

Proposition 3.9. Let A, u € A(H) and assume that © = U1(A) with a unitary operator
U1 € Ures(H;). Then for any continuous 10ops {c()}e[o,1] iN FA(H) = FA,(H) their
Maslov indexes coincide:

Mas({c(n}, 1) = Mas({c(n)}, w).

Proof. Let {Us}se[o,1) be a continuous curve itres(H;) which joins A and ., that is,
Up = Id andU1(») = p. Note then for each € [0, 1], FAy, i) (H) = FA,(H).
We defineamap : I x I — Ur(Hy):

SUpaps i (€(®) for (s, €[0,1] x [3,1].

Then{h(s, 1)} is a homotopy between the logs, (c(r))} and the loop{h(1, 1)} with the
fixed common initial and end poiif;, (c(0)) = Sy (c(1)) = h(s,0) = h(s, 1), s € [0, 1].
Hence

Mas({c(n}, 1) = M({S, ()} =M ({h(L, n}).

By the same way for the loopi(1, 1)} and S, (c(r)) we can construct a homotopy in
Ur(Hy) between them and these show the coincidence of the two Maslov indexes]

h(s, 1) = { Suzs(2) (C(D) for (s,7) € [0,1] x [0, 4],
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Corollary 3.10. Let {c(9)}:¢[0,1) be a continuous path in FA; (H) such that c(0), c(1) ¢
M, and let {Us)sefo,1] C Ures(Hy) be a continuous family with Ug = Id. We assume that
c(0), c(1) ¢ My, (H) for all s € [0, 1], then for all s

Mas({c(n}, A) = Mas({c(n)}, Us(1)).
3.2. Hormander index in the infinite dimension

Let A, u € A(H) and assume that = U(A) with a unitary operatot/ of the form
Id + compact operator, and I&t(r) };cj0,] be a continuous curve RA, (H) = FA, (H).

Proposition 3.11. The difference
Mas({c(n}, 1) — Mas({c()}, )
depends only on the end points.
Proof. Let{€(¢)} be another path with(0) = c(0), ¢(1) = c(1), then
Mas({c* (=€) (0}, ») = Mas({c(n}, ) — Mas({E(n}, n) = Mas({cx (=C)(D}, n)
= Mas({c(n)}, n) — Mas{C®)}, n)

by Proposition 3.9Hence we have the desired result. O

Using this property we can define an infinite dimensional version of an integer, called
“Hoérmander index”, for four Lagrangian subspaces.

Definition 3.12. Let u = U(A) € A(H) with U = Id 4+ compact operator, and lég and
{1 beinFA,(H) = FA,(H). Also let{c(r)} be a curve inFA; (H) = FA,(H) joining £g
and¢y1. Then we call the difference

Mas({c(n}, 1) — Mas({c(n)}, 1)
theHormander index in the infinite dimension and denote it by

Letu = U()) be as above and 1&g, £1, £2 € FAy(H) = FA,(H), thenthe Hormander
indexo(£g, £1; A, u) has the following properties.

Proposition 3.13.
o(lo, £1; A, ) = —o (L1, Lo A, 1), (3.10)
o(Lo, €15 A, u) = —o (Lo, €15 14, A), (3.11)

o(€o, €15 A, ) + 0(L, €25 &, u) = o(Lo, £2; A, ). (3.12)
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Let v = W(A) also with a unitary operator W = Id 4+ compact operator, then the cocycle
condition with respect to the last two components hold:

o(fo, £1; A, ) + (Lo, £1; ., v) = o(lo, £1; A, V). (3.13)
If weassumemoreover £1 = V(£g) withaunitary operator V of theformId-+compact operator,
then

o(bo, £1; A, 1) = —o (X, w; Lo, £1). (3.14)

Proof. Four properties except last one follow directly from the definition itself.

Let {Us}sefo,11 and {V;}:e0,1) be such curves of unitary operators that each operator
U, and V; are of the form of IcH- compact operator and assurig = Id, U1(A) = w,
Vo = Id andV1(£g) = £1. Then for anys € [0, 1], FAy, ) (H) = FA,(H), and for any
(s, ) (Ug(X), Vi(£o)) is a Fredholm pair. So the two-parameter continuous family of unitary
operatordSy, o) (V;(£o))} are inl{x(H;). Let us define a curvie(t) }o</<a4:

S (Vi(€o)) for 0<t <1,
Sy, for 1<r<2,
S8, (Va_4(£p)) for 2<1<3,
Su,_,0)(ko)  for 3<r <4

c(t) =

The unitary Maslov indeM ({c(¢) }o<;<a) Of this curve is zero, so

M ({Si. (Vi (€0)) }ref0.1]) — M ({S,. (Vi (£0))}refo.1))
= M{Su,0.) o)} rep0,1) — M ({Su, ) €D }relo, 1))
and byProposition 2.4%his equal to

= —M({Se, (Ui (M) }iefo,1) + M ({Sey (Ui () }iefo,1))-
Hence

o(lo, €1; A, u) = —o(A, u; Lo, £1). O

Remark 3.14. The Hoérmander index was first introduced in the pd26] to describe
the phase transitions in the oscillatory integral representation of Fourier integral operators
or Lagrangian distributions for the global formulation in terms of, so called, Maslov line
bundle. It was given also asGech cocycle. Our definition above is given in terms of the
Maslov index, and we need not to assume the transversality conditions between each of
the first two Lagrangian subspaces and each of the last two Lagrangian subspaces. The
reason is, of course, the Maslov index is defined for not only loops but also any paths. In
earlier papers written before the papp¥d 6,29]it was only considered for loops or with
the assumption that the end points of paths do not meet with a particularly fixed Maslov
cycle. However in order to construct the Maslov line bundle, it is enough to consider the
indexes for four Lagrangian subspaces satisfying transversality conditions.

In the next subsection we construct an infinite dimensional analogue of the Maslov line
bundle which will be turn out to be a kind of the universal Maslov line bundle.
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3.3. Universal covering space of the Fredholm-Lagrangian—Grassmannian

Inthis section we characterize the universal covering sﬁa}@H) ofthe Fredholm-Lag-
rangian—GrassmannidfA, (H) in terms of the Hormander index. We show the transition
functions of the principal bundle : FA,(H) — FA.(H) are given by the Hormansder
index. Here we understand the sp&&e,(H) consisting of pairg[c], c(1)) of homotopy
classesd] of paths{c(r)} in FA,(H) with the common initial point(0) = ¢+ and its end
pointc(1).

Letx € A(H) and assume ~ ¢, and we define a map

¢1 2 FA(H) x Z — FA¢(H)
by
¢y 1 (6, n) = [c(d)],

where{c(r)} is a path joining¢- ande, and Mas{c(r)}, £) = n. Note that we know the
homotopy class of such paths is uniquely determined.

By the definition of the topology on the spa&ei,(H), it is immediate to show that the
map is bijective, and not continuous on the whole space of definition.

Proposition 3.15. The map ¢, restricted to the open subset
(FA(H) \ M, (H)) X Z =0y X L

is an isomor phism with the space
7Y FA(H) \ D (H)).

Now letA ~ ¢, u ~ £ and letv € Oy N O,. Then if ¢, (v,n) = ¢, (v, m), then
n—m = o(t*, v; 1, u) and so by the cocycle conditiq.13) we have the following
proposition.

Proposition 3.16. The maps
g :-0xN0O, = 7Z, Vi O’(ﬁL,V;)\,,bL) (3.15)

are the transition functions of the principal bundle 7 : ﬁ[([‘]) — FA¢(H) with the
structure group w1 (FA((H)) = Z.

From this fact we can define the following definition.

Definition 3.17. We call the complex line bundlé, on FA,(H) defined by the transition
functionsf{h .} (A, u ~ £)

By (v) = oV —1/2o(t vik 1)

the universal Maslov line bundle.
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Infact, we have the following: | = Hp-+ H1 be an orthogonal direct sum by symplectic
subspaces with difflp = 2n < 400, and we fix Lagrangian subspadise Hp and¢; in
H;. Then we have an embedding A(Hp) — A(H)

i © A(Ho) — FAgyme, (H), 0 0@t (3.16)

Thenthe mapgives arelation betweenthe Hormander indexes GHo) andF A ye¢;) (H):
for A, u € A(Hp)

oLy, 0; A, 1) = o((Lo @ €)™, 0 @ €15 A @ €1, 1 © £1).

Hence we have the following proposition.
Proposition 3.18. i*(L¢,e¢,) = the Maslov line bundle on A(Hp).

Remark 3.19. The collections of the vector spaces
| AN
neFAL(H) H
and

U H/O+w
WEFAL(H) [+ u

are not apparently vector bundles, but

max * max
I H
A (/\ AN u) ® (/\ /O+ m)

has a line bundle structure. Hefg"®* A N 1« means the highest degree exterior product.
This is isomorphic with the induced bundle of the Quillen determinant line bundle on the
space of all Fredholm operators by the map> P, + P,, and also its complexification is
isomorphic with the induced bundle by the mapHds, [15]. This is a trivial line bundle.

3.4. Bilinear forms and Maslov index

For “differentiable curves” i{r(H;) satisfying a certain non-degeneracy condition,
there is another way of describing the “unitary Maslov index”. We define a symmetric
bilinear form which is analogous to Duistermht] and Robbin—Salamd29].

Let{c(n)} be a‘C1-path” inlz(H;). Here we meag-path in the following sense: there
is a continuous family D, },c; of bounded operator®, € B(Hj) satisfying

%(c(r +8) —c(®)) —t-D;|| =0(1) (3.17)

on the intervall. We denoteD; = (d/dr)c(r) = ¢(r).

Definition 3.20.

(a) Aparameter with0 < r* < 1is called arossing for the family{c(7)}, if Ker (c(#*) +
Id) # {O}.
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(b) We define therossingformat a crossing* as a symmetric bilinear form on Kex(r*)+
Id) by

~ d
Om(x,y) = EOC’ R:(y))y for x, y € Ker(c(t*) + Id),
t=t*

where{R;} is a family of bounded selfadjoint operators given by the relation=
c(t*)eV~1R R. =0, ie.

R = —/—1logc(t*) Y oc(r)) (for“log” see Remark 2.8 below.

Thené(r*) = «/—1c(*) o Ry+. )
(c) We call a crossing® isregular, if the form Qgy; is non-degenerate on Kexr*) + Id).

Remark 3.21. The logarithm above is defined by the integral
0
logM = / (=M1 —@w—-1tid}du (3.18)
—00

for a bounded invertible operatdf € B(H;) whose spectrura(M) does not contain any
negative real numbers(M) N (—oo, 0] = ¢.

The integral converges in the operator norm and the resulting family is agaitass,
if {M(1)} is so. The derivative in the sense(B8f17)is given by the integral:

0
%Iog M@ = / {(u — M@)o %M(t) o(u— l)_l} du. (3.19)

For our case/(r) = c(t*) "L o c(r), |t — r*| <« 1, by a direct calculation we have

d
5 logc(r*) ™ o c(1) ey

0 d .
= —\/—1/ {(u —1Id)y20 —(ct") Lo C(t))[_,*} du = Ry~.
o dr
Proposition 3.22. Let {c(f)} be a path in Ux(H;) of class C* and 0 < r* < 1 aregular
crossing. Then there existsareal § > 0 such that
M ({C(1)} 1=+ <5) = SigN Qan.

Before proving this proposition we give a lemma which describes a behavior of eigenval-
ues closeto zero of a family of selfadjoint Fredholm operators under a certain non-degeneracy
condition (seg22]).

Lemma 3.23. Let {A;}j;«1 bea C1-class family of selfadjoint Fredholm operators on a
Hilbert space H. Assume that the symmetric bilinear formon Ker Ag

d .
Q('x’ y) = E(-xv At()’))\t:O = ()C, AO()’))a X,y € KerAO
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isnon-degenerate. Then there existsa positive number § suchthat for 0 < r < § thereexist p
positive eigenvalues and q negative eigenval ues of the operator A,, where p — g = signQ,
p+q =dimKerAgp. Also for —§ < ¢ < 0 the opposite situations hold.

Proof. From the Fredholmness assumption of the continuous fafmjliythere exist posi-
tive numberss ande such that the projection operataPsfor |z| < § defined by

1
P =
' 214/ —=1 Jjuj=e

have the constant rank equal to dim K&y, and the range of eadh = Z|u|<5 Ker(A; —u).
By the approximation arguments we know that the bilinear forms

(u—A)~tdu (3.20)

1
<? - Ay o Pi(x), Pz(y)) , x,y€KerAg

and

dr
are uniformly close. In fact, far, y € Ker Ag

d
<—An_o(X), y) , x,yeKerAg

1 .
(; - Ay o Pi(x), Pt()’)) — (Ao(®), y)

1 . 1
= ((; “(Ay — Ao) — Ao) o P (x), Pz(y)> + (; - (P(x) = x), Ao(Pz(y)))

+ (Ao(Pi(x) — x), P(y) + (Ao(x), P (y) — ¥),

and wherr — 0, |Ao(P,(3)|| — O, |(1/1) - (P;(x) — x)| is bounded, and so these imply
the assertion. Note here we used the fact that the fapfilyis of classC®. Hence there
exist 0< §p < dand O< g9 < ¢ and for O < |t| < o the signatures coincide ant}

is an isomorphism betweel (H) = P;(Ker Ag) which gives the existences of the+ ¢
eigenvalues of the operatds, 0 < e1(¢) < ex(f) < --- < e,(t) < ggand—eg < e_,(1) <
e_gr1() <--- < e_1(t) < 0. O

Proof of Proposition 3.22. By the assumption there are a complex numbérg (close
enough to &1 put + em”) ande > 0 such that forr — r*| < & the operators
evV=1% _ ¢(s) are invertible and

Z dim Ker(c(r) — eV~ 2Ty _ o0,
1ol<e
Putc(z+1*) = c(t*) ev~1R gand letA, be a selfadjoint operator defined by the transformation
v—160 _ 1
A= VI — ot + ) e 0 4 ot + 1) — VI,
ev—To 11

then{A,} <. is aCl-class family of Fredholm operators.



K. Furutani / Journal of Geometry and Physics 51 (2004) 269-331 307

We have an expression of the derivati¥g by using the resolvent equation:
Ao = (/0 — c(t*))"1)* 6 2Rg o (/0 — (%)L, (3.21)

This shows that the derivatively and 2Rg are conjugate, which gives us the coincidence
of the signatures of the two bilinear forms defined on (€éi*) + Id) = Ker Ag: for
x,y € Ker(c(#*) + I1d) = Ker Ag

(€70 — c(r)™h)* 0 2Rg 0 (/7 — c(1*)) (), y)
2 . .
=—— (R , ) =(A ,Y).
o/ 2 R0t ) = (Ao, )
Hence by applying the precedingmma 3.23t0 the operator familyfA,} and returning
back to the original family{c(s)} we have the desired numbers of positive and negative
eigenvalues of the familjc()} ;<5 for sufficiently smalls, which gives

M ({c(D)}11<s) = SIgN(Ag) = Sign(Ro) = sign Qgn. O

Remark 3.24. For crossing™ = 0 or 1, we only consider the one-side differentiation in
the definition of the crossing form. In these cases we have

M ({c(D}o<i=s) = —q, M ({c()}1-s<i<1) = P/,

where the signature @y atr* = 0is (p, ¢) and at* = 1 (p/, ¢').

Corollary 3.25. Let u : I — FA;(H) bea Cl-class path (so that S; o uu(7) isa path in
Ur(Hy) also of class C1). Let 0 < * < 1 bearegular crossing of the curve {S;, o u(1)}.
Then thereexist a § > 0 such that

Mas({u (1)} jr—r|<s, ) = Sign Qo

where Qgy; denotes the crossing form of {S; o (1)} at thetimer = r*.

There is another bilinear form (s§kl,29) for describing the Maslov index which will
turn out to be more suitable for proving theectral flow formula (seeSection §. It is based
on a representation @f as the graph of a suitable bounded operator/def — FA; (H)
be a pathiFA, (H) of classC! and let 0< r* < 1 be a crossing of the cury&) o (1)}, i.e.,
w(r®) N A £ {0}. Fort, |t — r*| <« 1, u(¥) is transversal tau(+*) - and in this neighborhood
of t*, eachu(r) can be written as the graph of a bounded operator u(t*) — w(*),
w(®) = {x+ J o A;(x)|x € u(r*)}. Note that the curvéA,} is also of clas€™l. We consider
the bilinear form

d
Qo (x,y) = qolx. JoAY) for x,y e pn(r"). (3.22)
t=t*
In the above definition of the bilinear for@y; we used the fact that the inner product in
the Hilbert space is compatible with the symplectic fapprso thatw (r*) is a Lagrangian
subspace, Butthisis notessential. In factyle¢ a Lagrangian subspace which is transversal
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to u(r*), then for sufficiently small — t*| « 1 Lagrangian subspacés,} are transversal
to v. Then there is again a differentiable family of bounded opergrs;—+|«1, ¢: :
u(@*) — v, by which we have.(r) = graph of¢, for eachy, |t — *| « 1.

Now lety € u(*), then we have

y+¢(y) =z +J o Au(z0), (3.23)

wherez; = Py (y + ¢:(y)) is a differentiable family inu(¢*) andz+ = y. Hence by
differentiating the both sides ¢8.23)we have

d d d
aﬁbt‘,:,* » = Pur) a(’bllr:t* M)+Jo EAI":’* .

By this equality we have the invariance of the definition of the bilinear f@m from the
auxiliary fixed Lagrangian subspace

Proposition 3.26.
d
QSI)T(Xs )’) = Ea)('xv ¢t(y))|l=l*v X,y € /.L(t*)

Proof. Letx, y € u(¢*), then

d d d
Ew(x, G )= = @ (x, P (acbz',,* (y)) +Jo EAI‘,:,* (y)>

d
=w (x, Jo aAm:,* (y)) = Om(x, y). U

The bilinear formQgy is symmetric onu(t*) at each point* solely defined by the
differentiable family{.,} itself and we show the coincidence of the signatures of two
bilinear formsQgy and Qgy .

Proposition 3.27. On u(*) N A, signQgy = sign Oon.

Proof. We have two expression of the spacg):

@) u@) ={x+JoAW|xeud}, A € l?(u(t*)), {A,} is Cl-class.
(b) w(» = U;(A 1), where{U,} is aC2-class family of unitary operators df;.

PutU, p = Up eV—1s andc(z + t*) = S (u( + t*)) = c(t*) eﬂRf, where{S;} and
(R,} areC-class families of selfadjoint operators &fy. We represens; = X, + ~/—1Y;
with X;, ¥; € B(u(t*)), X ='X andY = -'Y.

By differentiatingc(r) = U; o 6, (U;) att = t* we have

d ) . .
Ec(t)\t=t* = C(t") = Up 0 v/ =180 0 6, (Ups) + Ups 0 05, (Upe 0 ~/—180)

= Up (v —=1(Xo + V/—1Y0) + vV/—1(Xo — v/—1¥0)) 0 6, (Us+)
= 2J/=1Up 0 Xg 0 6, (Up) = ~/—1c(t*) Ro.
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This identity says that the bilinear for@y on H; defined byRg is unitary equivalentto the
complexification of the bilinear form defined by the real selfadjoint operat@rdh 1 ().
Now by differentiating the equality

Ui(x) = P/L(t*)(Ut(x)) +Jo At(Pu(t*)(Ut(x))), X € )»J',
we have
Py 0 So(Up (x)) = Ao(Up (x)).

Note that we used here the equatibn Py + Py o J = J.
Letx, y € u(t*), then we have

w(x, J o Ag(y) = (x, Ao(y)) = (x, Pui+) 0 So(»)) = (x, Xo(»)). (3.24)

Hence the unitary equivalence (on the whole spdgpof the bilinear forms defined by
the operatorgey and 2Xg and theEg. (3.24)(note that the identity holds on(:*)) show
the proposition. O

Remark 3.28. The unitary equivalence of the two bilinear forr@sy and Qgy on w(1*)

implies that the definition of the bilinear for@gy; does not depend on the almost complex
structureJ by which we regard the real Hilbert spageas a complex Hilbert spack;.

This means we can freely replace the inner product by a suitable one. For example, we
can assume that any two transversal Lagrangian subspaces are orthogonal (see proof of
Theorem 5.10

Now we have a similar formula witRroposition 3.22

Corollary 3.29. Let u : I — FA,(H) bea Cl-classpath. Let 0 < 1* < 1 be aregular
crossing of the curve. Then it is also regular crossing of the curve {S) o u (1)}, and there
existsa positive § > 0 such that

Mas({u () }1—r+|<s, 1) = SignQop,

where Qgy denotesthe crossing formof {.()} at thetimer = r*.

Remark 3.30. In the papef29] the authors gave a definition of the Maslov index (for the
case of finite dimension) for such differentiable curi@®)};<[0,1] that all their “crossings”

are regular in terms of this bilinear form with corrections at the end points by adding the
halves of the dimensions dimn c(1) and dimA N ¢c(0).

Finally in this subsection we give an example af*&class path with a regular crossing
and calculate the Maslov index.

Example 3.31. Let F be a finite dimensional subspaceJitt.), and we define a family of
unitary operators such that

ev=l .y xeF

vt = x € FEnJ®)

(3.25)
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For each, r € [0, 1] let () = U(5)(J(L)), thenu () € FA, (H) andt = 1/2 is an only
non-trivial crossing with. and is regular. As is easily determined the crossing form is given

by

Om(x,y) =m(x,y), x,y€J(F). (3.26)
Hence we have

Mas({t(t)}o<r<1, ») = SignQgy = dim F.
AlsoforO0<e « 1

Mas({u(D}1/2<1<1/24¢, 2) =0,

and
Mas({u(H)}1/2—e<t<1/2, 1) = dim F.

3.5. Madlov index for paths of Fredholm pairs of Lagrangian subspaces

In this subsection we will denote the direct sum of the symplectic Hilbert gifaee) and
(H, —w) with the notatiotl = HBH = H,BH_,.His a symplectic Hilbert space with the
symplectic form2 = w — w, and the corresponding almost complex struciuse J& — J,
so that we havély = H;BH_;. Then the diagonah in H is a Lagrangian subspace.
Let {(u:, Ar)}rer b a continuous family of Fredholm pairs of Lagrangian subspaces, then
{u:HA;:} is a curve iINFAA (H,BH_,). Of course it is natural to define the Maslov index
of the curve of Fredholm paifgu,, A,)} to beMas({u; ® A}, A).

Proposition 3.32. Let {u,} bea continuous curvein FA; (H,), then
Mas({ur}, A) = Mas({u; @ A}, A).

Remark 3.33. For loops this property will be well-known. For arbitrary continuous paths

in the finite dimensional case this can be proved by making uBeapfosition 4.3Section

4.1), but in the infinite dimensional case we have no such relations and we need a proof
which is valid not only for loops but also for any continuous paths.

If we identify Hy = A + At = A + J(A) = A ® C, thenta (afb) = bHa. Let us
decomposed asH = A @ A+ and letp : A — Al be

@((x, YE(x, y)) = (—x, B, —y),

where we express elementsAnby (x, y)B(x, y), x + y € A + A+ = H. Then we have
graphy = A1@A.

LetA=Jog:A— AandV:Hj— Hjby

/=1 A®Id

VZ\/E N




K. Furutani / Journal of Geometry and Physics 51 (2004) 269-331 311

where we regard = A ® Id is complexified according to the identificatidfy = A ® C.
Then we have

V=1(A ® 1d)((a, b)F(c, d)) = (¢, —d)B(—a, b) (3.27)
for (a, b)B(c,d) € HyBH_; = (» + AH)B(O + A1) and
V(AL) = atEn. (3.28)

Now we define mapa;, b, and P, as follows:

a1 U (Hy) — Una(Hy), U UoV,
whereU = UBId : HyBH_; — H;BH_;

by : Ur(H;) — Ur(Hy), Wi V=1-Wo (A®Id),
and

P, FA, (H) - FAA(H), W wHA.

Lemma 3.34. The following diagram is commutative.

Un(H;) -2 Ur(H;BH_y)

n] Jos

FAN(H) > FAA(H,BH_,)
A

le lSa

Ur(H)) —2 Ur(H,BH_;)

Proof. Itwill be enough to proveéS o Py = b, 0S;. Sinceda (V) =V, V2=,-1-A®Id
andéda (U) = IdBU* we have
Sa o pa(@ () =UoVotAo(l7oV)*otA = f]o\/—_l(A(X)ld)o@A(f])
= U b(1) o V—1(A®Id),

which prove the commutativity of the diagram. O

Proof of Proposition 3.32. From the above lemma we can show that iis an eigenvalue
of Sa(pa (@, (1)), then—E? is an eigenvalue of; o p; (U). Conversely ifl = gvV—lo
is an eigenvalue o8 o p; (U), then only one ofteV—1+9) is closed to—1. So if we
have a continuous curvig,} C FA, (H), then the numbers of eigenvalues{&¥ (i;)}

and {Sa (uHBA)} which across €17 coincide in both directions. This proves the pro-
position. 0

The next property will be also natural.

Proposition 3.35. Mas({u,HA;}, A) = —Mas({A;Bu,}, A).
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4. Finitedimensional cases

In the finite dimensional cases, the Maslov index for arbitrary continuous paths in the
Lagrangian—Grassmannian was first defined in the pg@rby noting the extendibility
of the “Leray index” for arbitrary pairs of points on the universal covering space of the
Lagrangian—Grassmannian by making use of the cocycle condition of tnay‘index”,
and this condition comes from the relation with tH€aShiwara index”. Conversely, first
we define Maslov index for arbitrary paths with respect to a Maslov cycle as we gave above,
then we can define thd_&ray index” for arbitrary pairs of points on the universal covering
of the Lagrangian—Grassmannidtrg¢position 4.3

In the infinite dimensional case we could define the Maslov index for arbitrary paths with
respect to a Maslov cycle as we did in the abBédinition 3.8 however we cannot define
“Kashiwara index’ for arbitrary triples of Lagrangian subspaces like the finite dimensional
case, although we have a symmetric bilinear form similar to the finite dimensional case.
Only we can define it for mutually almost coincident triples, since then the symmetric
bilinear form is of finite rank. Also we cannot define “Leray index” for arbitrary pairs of
points on the universal covering space of the Fredholm—Lagrangian—Grassmannian.

In this section, following[16] we summarize the mechanism for defining the Maslov
index for paths inA(H) of the finite dimensional symplectic vector spaéeand give an
extension of the “Kashiwara index” to arbitrary triples of unitary operatsestion 4.2

4.1. Leray index and Kashiwara index

Let ¢1, £2 and{3 be three Lagrangian subspaces and define the quadratigiamthe
direct suméq @ £, @ £3 as follows:

0, ¥, X =wx x)+ o, X)) +w",x), xet1, X ety x" etz (4.1)

The corresponding bilinear form is

Iy(x,x', x";a,d,d")
=owx,d)+oX, a)+okxd)+ 0" a)+ox, d)+ox" d),

x,aely, x,d ety x' d ela.

The signature of this quadratic form is callelddshiwaka index” or “ cross index” of the
triple of Lagrangian subspaces. We denote it £2, £3).

In the finite dimension cases, although (H) = A(H) always, it should be noted that
the Souriau map,, : A(H) — U(H)) itself depends on the pre-fixed Lagrangian subspace
A. Now let

U(H)) = (U, a) € UH)) x R|detU = e¥~1)

be a realization of the universal covering of the unitary gréi{pi;), then the space
Sj{(i{(HJ)) = A(H) = {(n, @) € A(Hy) x R|detS; (n) = ﬂ"‘} is the universal cover-
ing of the Lagrangian—Grassmanniai/) with the projection mag, : A(g{) — A(H).
Let ¢4 and ¢, be two point onS} (U(H;)) = A(H) and we assume thaj, (¢£1) = ¢1 and
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g, (l2) = €5 are transversal, i.e¢g N €2 = {0}. Then Id+ S, (€1)S, (£2)* is invertible, so
we define Leray index” wu(£1, £2) of such a pair by the following definition.

Definition 4.1.
~ - 1
w(ly, £2) = E(Oll — a2 + v —=1Trlog(—S,.(£1) 0 S, (€2)")),
where log is defined b§3.18)

We have a fundamental relation of the Leray index and the Kashiwara index (cocycle
condition of the Leray index).

Proposition 4.2. Let 1, £ and €~3 be three points on A(H;) such that each of the pairs
(g1(£1), g1.(£2)), (g1 (£1), g1(£3)) and (g5 (£2), g (£3)) istransversal, then

w1, €2) + n(la, 3) + (€, £1) = o(ga.(€1), g1 (€2), 4. (£3)). (4.2)

Then we define for any paitgs, £2) € A(H) x A(H) (without transversality assumption
between the paify; (¢1), ¢;,.(£2))) the “Leray index” w(£1, £2) by the formula

(1, b2) = (@, €2) — n(€, £1) + o(qs.(£1), g2 (£2), g2 (£)) (4.3)

by taking an elemerttin A(H) such thay; (¢) is transversal to each (&) (i = 1, 2).
The independence of this value from the choice of such ¢ is proved by making use of the
fact

do(Lo, £1, L2, £3) = o(Ly, £2, £3) — o(Lo, £2, £3) + 0(£o, £1, £3) — (Lo, £1, £2) = 0.
(4.4)

Now we fix ar € A(H) and let{c()};c[0,1] be a continuous curve in(H), and take a
lifting {€(1)}:[0,1) Of the curve{c(r)}. Then we have the following proposition.

Propositiion 4.3.
Mas({c()}, 1) = u(€(0), &) — o(, (1), c(0)).
4.2. Complex Kashiwara index

By the very definition of the Leray index we see that it can be defined, by the same
formula, for any pairs of the pointqU, a1), (U, @2)) in U(Hj;) with the property that
Id + Uy o Uyt is invertible:

1
(U, an). (U, @) = 5—(o = o2 + V=1 Trlog(~U1 0 Uy™)).
Then for such triples the sum

w(U, a1), (U, a2)) + u((U, az), (U, @3)) + n((U, a3), (U, a1))
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isindependent af1, a2, a3). This enables us to extend the Kashiwara index for any triples
of unitary matrices. We explain it here.

We denote the sesquilinear extension of the symplectic fotmg »C.

For three Lagrangian subspadese AC(H ® C) (i = 1, 2, 3) we define the bilinear
form

IS L1®L®L3xL1®Lyd Ly — C, (4.5)
by
15,7, 2" ww', w')
— G)C(Z, w/) + w(C(w’ Z/) —i—a)C(Z, w//) + a)C(Z”, w) _,’_w(C(Z/’ w//) + CU(C(ZN, w/)’
z=x++~-1y, w=a++~-1belLy, 7,0 ely 7', 0" eLs.
Then this is an Hermite form oh1 & L & L3. We denote the signature of this form by
o®(L1, L2, L3)

and call it “complex Kashiwara index” or “complex cross index”. If edch= 1; ® C
with A; € A(H), then this is the sesquilinear extension of the bilinear fégnand their
signatures coincide.

Next recall the isomorphisr®;, (2.46)

@, 1 UH;) > AS(H® C),

@, (V) = the graph of the unitary operatert o Vo 1; o 81 € U(E4, E_).
Proposition 4.4. Let (U;,a;) € U(Hy), i = 1,2,3,i.e, detU; = eFl"’i, and assume
detUi o U+ +1d) # 0,4, j = 1, 2,3, then

u((U1, a1), (Uz, a2)) + u((Uz, a2), (Us, a3)) + n((Us, a3), (U1, 1))

= o%(@;,. (), @, (U2), ®;.(U3)).
Especially the value of o does not depend on the fixed A.

Now let (U1, @1) and(Uz, az) be any pair of the points i(H ;) and choose an element
(U, @) such that

detld + U1o U™ £0 and detid+ UsoU™Y) 0. (4.6)

Then we can define the “Leray index” of the péify, «1), (U2, a2) by the formula.
Definition 4.5.

u((Uz, a1), (U2, a2))
= u((U, @), (U2, a2)) — u((U, @), (U1, @1)) + 0% (®,(U1), ®1(U2), ®1(U)).

The similar cocycle property af® with (4.4) guarantees that this definition does not
depend on the choice of the elemé&bt «) which satisfies the conditio(.6), and the
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function is defined on the sQaEQH) x U(H). Also it is the extension of the Leray index
defined on the spacé(H) x A(H) through the embedding

A(H) x A(H) = U(Hy) x U(H}).
Note that this embedding is defined by choosinga A(H).

Remark 4.6. We do not state the invariance of the Maslov index and other indexes (finite
and infinite dimensions) under the unitary and symplectic group actions. These will be
proved by making use of the properties of the Souriau map.

5. Polarization and areduction theorem of the Maslov index

For the proof ofTheorem 2.54ve employed the finite dimensional reductiea the
diagram(2.44) of the Maslov index from infinite dimensions to finite dimensions. In
this section we prove a reductiarheorem 5.1®mf the Maslov index inside the infinite
dimensions.

5.1. Symplectic transformation and Canonical relation

First we remark a continuity of a symplectic transformation.

Let H; (i = 0, 1) be two symplectic Hilbert spaces equipped with compatible symplectic
structures (symplectic forms;, inner producte, e); and almost complex structurds
(i = 0, 1)). As inSection 3.5ve consider the direct suiglEH; as a symplectic Hilbert
space with the compatible symplectic form

2((x, a), (y, b)) = wo(x, y) —wi(a, b), (x,a),(y,b) € HoEBH;.

Let S : Hy — H; be alinear map defined on the whole spakeand we assume that
keeps the symplectic forms:

w1(S(x), S(y)) = wo(x,y), forall x and y € Hp. (5.1)

Then it is easy to see thatis injective and the graplirs = {(x, S(x))|x € Hp} is
an isotropic subspace. Under the assump(mn), the closure of the imag&(Hp) is a
symplectic Hilbert space. So now we start assuming$§hets a dense image, then we have
the following proposition.

Proposition 5.1. Thegraph G isaLagrangian subspacein HoHH;. Hence Sisabounded
operator by the closed graph theorem.

Proof. Let (a,b) € HoEH1 and 2(a, b), (x, S(x)) = 0 for all x € Hp. Then we have
wo(x, a) = w1(S(x), b) = w1(S(x), S(a)). HenceS(a) = b, which shows that the graph
G is a Lagrangian subspace Hy®B H1. O

By this proposition, if a symplectic transformatishbetween two symplectic Hilbert
spaces is algebraically isomorphic, then it must be topologically isomorphic.
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We call a Lagrangian subspacein the direct sumHpE H1 with the symplectic form
2 = wp — w1 a canonical relation (see for the global settifig®,21]). The graph of a
symplectic transformation defined on the whole spagewith the dense image is so a
canonical relation.

In this section we consider a particular canonical relation given as a graph of a closed
symplectic transformation, that is, I1§the a densely defined closed and symplectic trans-
formation, and in particular not continuous:

§:Ds — Hi, wo(x, y) = 01(S(x), S(y)), xandy € Dy,
where®y is a dense subspace in the symplectic Hilbert sgacélhen again we have the
following proposition.

Proposition 5.2. Let us assume that S has the dense image, then the graph G isa La-
grangian subspace in HoBHj.

Let A € A(Hp), then we have always N Dg # {0} andS()) is an isotropic subspace,
but will not be a Lagrangian subspace in general.

In the next subsection we will shohheorem 5.1@hat if we induce this mag between
certain Fredholm-Lagrangian—Grassmannians, then it preserves the Maslov index under
additional assumptions.

5.2. Polarization of symplectic Hilbert spaces
Again let H be a symplectic Hilbert space.

Definition 5.3. We say that the symplectic Hilbert space is polarized, wHes decom-
posed into a direct sum of two Lagrangian subspaces

H=1(,®(_.
Or we say that the surif = ¢ @ ¢_ is a polarization ofd.
Remark 5.4. In the polarizationH = ¢, & £_ the subspaces need not be orthogonal,
however itis possible by replacing the inner prodsgitripl ectic form shoul d not be changed
always) that the sum is orthogonal. Of course the new norm is equivalent to the initial one
(Remark 3.29).
Proposition 5.5. Let H = ¢_ + £, bea polarized symplectic Hilbert space.

(a) Let Sbeaclosed subspacein ¢_, and wetakea complement Tof Siné¢_,¢_ = S+T.
Put F = T° N {4, then S 4+ F isa symplectic subspace, in fact

S+FH°=T+8 Nty
and

S+F+T+S°Néy =H.



K. Furutani / Journal of Geometry and Physics 51 (2004) 269-331 317

(b) Let Shea closed subspacein¢_ and F bea closed subspacein £,.. Assumethat S + F
isa symplectic subspace, then F° N £_ + S° N £ isa symplectic subspace

(S+F)°=FNi_+5 N,

Proof. Proof of (a). PuiG = S° N ¢4, then
S+ =8S°NT°NeL)°=T+8NLy =T+G,

sinceT C S°. NextbyF+G =T°Ne4+S°Ney C £y wehave(T°Ney +S°NE4)° =
(TH+e)N(ES+4y)=Li,henceF+G =¢,.SOF+S+G+T =H.

Proof of (b). PutT = F°N¢_andG = S° Ny, then(T + G)° = (F+4£-)N
(§+¢4) = F+ S. Now it is enough to show tha¥ + F = ¢,. Since(G + F) C {4,
by C(F+S°NE)>°=FN(S+4£¢y)=F° NS+ ¢y =¢y. Here we used the fact that
¢4 C F°andF° NS = {0}. This proves (b). O

Corollary 5.6. Let A_ + Ay = H beapolarizationand S + T = A_ be a decomposition
by closed subspaces. Put F = T° N A4 and G = S° N A4, then we have a new polarization
of HH=(T+ F)+ (S + G).

Corollary 5.7. Let H = ¢_ + ¢, be a polarized symplectic Hilbert space, S a closed
subspacein ¢_ and F a closed subspacein £,.. Assumethat S + F isa symplectic subspace
asin the proposition above (b), then we can introduce a compatible inner product with the
symplectic form which satisfies that all for isotropic subspaces S F, T = F° N £_ and
G = S° N ¢4 are mutually orthogonal .

We use this corollary in the proof dtheorem 5.10

Remark 5.8. The operationS — S° N £ is idempotent. In fact(S° N €;)° N - =
S+L)Ne_=S8.

Let us consider the following situation:

[CP1]: Let H and B be symplectic Hilbert spaces with a compatible symplectic structure
wy and wg, respectively. We assume both are polarized with Lagrangian subspaces
At and £ :

B=Xy+Ar_, H=10;+¢0_.
[CP2]: There are continuous injective maps
i+:£+—))n+, i_ A — £_

having “dense images’.
[CP3: Foranyx € ¢ andb € A_

wp(i+(x), b) = wp (x,1-(D)).
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Remark 5.9. An example satisfying these conditions is giversiction 6.1Example 6.7

Let u € FA(B) and put
y(u) ={(x,y) € by ®L_|3b € A, (i+(x), b) € pandy = i_(b)}.

The subspaceg(w) is always isotropic, but need not be always Lagrangian nor closed. For
example, if we take._ aspu, theny(x_) = i_(1_) is dense but not closed i, so it is

not a Lagrangian subspace. However if we restrict the jmépF A, _(B), then we have

the following theorem.

Theorem 5.10.

(@) For n € FA;,_(B), y(n) € FA¢_ (H).

(b) Themap y : FA;_(B) — FAy_(H) iscontinuous (and more strongly it is differen-
tiable).

(c) Let {c(r)} beacontinuous curvein FA;_(B), then

Mas({c()}, A—) = Mas({y(c())}, £-). (5.2)
We prove this theorem in the next subsection.

Let® =iy () +Ar_andS:®D — H,S:i,(x) +b — x+i_(b), then by the
assumption CP3] the mapS is a symplectic transformation and we have the following
proposition.

Proposition 5.11. Let H = HHEB bethe symplectic Hilbert space with the symplectic form
2 = wy — wp and let

C={(x,yHB(@ab)eHlxetly, bei, y=i_(b), a=iy(x)}.

Then C isthe graph of themap S, isa Lagrangian subspace and S(u) = p(u).

Proof. Itiseasytoshowthat isisotropic. Sowe only prove the following: let, v)@B(k, k') €
H satisfying

2((u, u)BKk, k), (x,i-(0))B(+(x), b)) =0

forany (x,i_(b))@E(i+(x),b) € C.
Then we have

wh W, i-(b)) + op ', x) — wpk, b) — 0p(K', it (x)) = 0.

From this equation and AssumptioBRP3], we haveu’ —i_(k") = 0 andk — i, (u) = O,
which show(u, u")@B(k, k') € C andC is a Lagrangian subspace.
Now we see the coinciden& ) = y(u) by the definitions. O
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5.3. Proof of Theorem 4.10

Let S be a finite dimensional subspaceiin, then there is a finite dimensional subspace
L in ¢4 such thati_(S) + L is a symplectic subspace i and by AssumptionqP3]
S +i4(L) is also a symplectic subspaceBn There are many possibility to choose such
a subspacd.. We fix one of them by introducing a compatible inner producHirwith
respect to whicll.. are orthogonal. So we put = Jg(i_(S)), whereJy is the almost
complex structure defined by the compatible inner product.

Hereafter we put the symplectic subspasesi, (L) = Bs andi_(S) + L = Hg with
L = Jy(i—(S)), corresponding to a finite dimensional subsp&da A _.

Then we have a symplectic isomorphism

iS=i_, & (i+)|;j(L) “Bs=S+i(L)> Hs=i_(S)+ L,
Xty o)+ (97,

Next we remark that iff is a Lagrangian subspace®y then(S+Nx_)+#0 is a Lagrangian
subspace iB. Let us denote the Lagrangian subspace of the fdrhma_) + 60 by A(S, 6)
and denote the subset of such Lagrangian subspaces that are “transvexsatito

AL = (A(S,0) = (SE NA_) +0IA(S,0) N A4 = {0}, 0 € A(Bg)).
Then we have

U U 7a%B) = Fa,_B).

BCh—.dim B<co ;4O

Foru € FA,_(B) putS = A_ N u, then there is a Lagrangian subspédée Bs such that
the Lagrangian subspace of the fot§i- N A_) + 6 is transversal both tp and i by
Proposition 2.43

Let A(S,0) € Ago), then we can define new polarizations fand B which satisfy
Assumptions CP1], [CP2] and [CP3] by making use o (S, 6). Theses are obtained by
replacing the Lagrangian subspacesand¢_ by A(S, ) and ((i—(S)~ N €_) +i5®)
respectively with the samie, andZ... We replace the maip. byi_ @ ilse. Note that
this change of polarizations do not change the map

Now leta € Ago), then anyu in ]—'A&O)(B) is expressed as a graph of a continuous map

¢u Ay — A. Hence on?A(ko)(B) the mapy is expressed in the form

1sLra_

(1) = the graph of the maig o ¢, o iy.

So it will be apparent of the continuity and also of the differentiability of the mam
FAQ (B), if we knowy (1) € FA;_(H).

To show the last assertion it is enough to prove the case wieeh_ and also it will be
enough to prover(u)° C y(u). So letx € £+ be an arbitrary element and assume that an
elementz + b € £, + £_ satisfies

wg(x+i_o¢oir(x),a+b)=0.
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Then we have
wg(x,b) +wg(i—_opoir(x),a) =0.
Hence by Assumption(P3]

oy (x,b) + wp(i- o oir(x),a)
= wp(x,b) + wp(¢oiy(x),ii(a)
= o (x,b) + wp(p 0it(x),i+(a)) + wp(i+(x), ¢ oi(@) —wu(x,i-ogoii(a))
=wy(x,b) + wp(ir(x) +¢oii(x),it(a) +¢oiy(a) —wp(x,i-opoiy(a))
=wy(x,b) —wgx,i_ogoiy(a)) =0.
From this we have
b—i_og¢oiy(a) =0,

which shows thata, b) = (a,i_o¢oii(a)) € y(u). Hencey(w) is a Lagrangian subspace.
These prov&heorem 5.1(a) and (b).

For the proof ofTheorem 5.1(r), we compute Maslov indexes of particular paths ex-
plicitly along the following steps (F1)—(F4) (see also similar argumenii8]jn

(F1) Let{c(n} be apath suchthatalr) is transversalta_, theny(c(¢)) is also transversal
to ¢_ for anyt. HenceMas({c(r)}, A_) = Mas({y(c(r))}, £_) = 0.

(F2) LetL be a subspace iy with dim L = 1 and let{c(s)} be a loop defined iExample
3.31 of Section 3.4 forF = i (L). We assume the symplectic structure Bnis
compatible. S& + Jp(F) is symplectic and. +i_ o Jg(F) is also symplectic irH.
Let F = F+ N, then the pathy(c(r)} is expressed as

y(c(n) = {cos(nt) - x + sin(r) -i_oJgoir(x)+zlx € L,z € (i) NF)).

The path{y(c(#))} has only one non-trivial crossing at= 1/2. We show that this is
a regular crossing and determine the signature of the crossing fars at2.
LetA = i_oJpoiy and we take a suitable subspdcen ¢_ suchthak N A(L) =
{0}, K+ (i4)"1(F) is symplectic, and. + K = vis a Lagrangian subspace transversal
to {y(c(1/2))}, so that we can expre$p(c(r))};—1/2«1 as graphs of linear maps
froy@@)) =A@ + () HE) v, fiiutze cot() - ATHw).

Now we determine the crossing formsat 1/2. Letx, y € L, then

d
g on (AW, fitA)i=1/2

—TT
=wy|i_oJgoi (x),,—y)
( T sin2(mn) ) 2y o

= —nwp(Jp 0 i1 (x), i+ () = w(i+(x), i+ ().

From this equality, both of the Maslov indeXdas({c(r)}, A—) = LandMas({y(c(?))},
) =1.
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(F3) Letu in FA,_(B) and assume: is contained in the Maslov cycl®t,_(B) with
dmuni_=N>0.
Let {c(s)} be the path inFA,_(B) defined inExample 3.31in Section 3.4 for
F=iyoJygoi_(uNai_).
Note that here we uségrollary 5.7for the existence of a compatible inner product
in the symplectic Hilbert spack. So by the corresponding almost complex structure
Jp, the isotropic subspacas A _ iswrittenaguNi_ = Jp(iroJgoi_(uNA_)). Then
we can construct a path Example 3.3bf Section 3.4 in terms of unitary operators.
Now again the patfy(c(r))} has only one non-trivial crossingrat 1/2 with£_ and
by the same way as in (F2) we know that the crossing formis positive definitean.
(F4) Finally we can prove the coincidence of the Maslov ind€xedfor arbitrary continu-
ous paths. Since if the given pdtt(z)} is a loop, then they coincide because of the fact
that they coincides for a generator of the fundamental group of the shage(B).
If it is not a loop, then by joining the paths in (F3) from the end point which is in the
Maslov cycledt, _(B) and we make this catenated path to a loop again by joining a
path in (F1). Now we know the Maslov indexes of these loops coincides and Maslov
indexes of added paths are all coincident, so that this prbesrem 5.1().

6. Closed symmetric operatorsand Cauchy data spaces

In this section we discuss Lagrangian subspaces in the symplectic Hilbert$pace
plained inExample 2.2

6.1. Cauchy data space

Let L be a real Hilbert space, antl be a closed densely defined symmetric operator
with the domain®,, ¢ L. We denote the domain of the adjoint operatdrby ©,,. As
explained in th&example 2.2he factor spacg = D/, is a symplectic Hilbert space.

Even if we add a bounded selfadjoint operaBoto the operatod, we have the same
domain® y; of the adjoint operatatA + B)*, the graph norms defined @y, are equivalent
and moreover the symplectic forms defined by the operatand A + B coincide.

In any case we denote hythe natural projection map : ©,, — B. It will be clear
thaty(Ker A*) is an isotropic subspace, but we need some assumptions on the operator
to show the closedness of it. We call the spagd€er A*) “Cauchy data space”.

Proposition 6.1. Let © be a subspace such that ®,, ¢ ©® C ©,,. Then the restriction of
the adjoint operator A* to the domain ®© is selfadjoint, if and only if, the factor space y(D)
isa Lagrangian subspacein .

From now on we assume that:

[E1]: A has at least one selfadjoint “Fredholm” extension, that is, there exists a subspace
® (closed in the graph norm topology) such thay = A‘*@ is selfadjoint and has
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the finite dimensional kernel and the image (D) is closed inL and is of finite
codimension.
[E2]: Ker A* N D, = {0}.

Remark 6.2. By the assumptiong2], A* : ©, — L is surjective. For the case of
differential operators, the conditioiE®] is requiring that the operator satisfies the unique
continuation property with respect to a boundary (or a hypersurface).

Both of these conditiond1] and [E2] are satisfied by elliptic operators of Dirac type on
compact manifolds. For such operators the unique continuation property holds with respect
to any hypersurfaces. The spabg, will be the minimal domain of the definition, i.e.,
the subspace of the first order Sobolev space with the vanishing boundary values, and the
Cauchy data space will be realized in a subspace of distributions on the boundary manifold,
that is, in the—1/2 order Sobolev space.

Proposition 6.3. Under the assumptions [E1] and [E2]

(a) y(Ker A*) isa Lagrangian subspace,
(b) y(Ker A*) and () isa Fredholm pair.

Proof. SinceA*(®) is a closed finite codimensional subspace, we hiave1(A*(D)) =
Ker A* + ® is a closed subspace By, (equipped with the graph norm topology), hence
y(Ker A* + D) = y(Ker A*) + y(®) is closed ing.

Againsince Kerd*+9 is closed and dirgKer A*N®) < +oowe know that Keid*+2,,
is also close irD;, and soy(Ker A*) = y(Ker A* + D,,) must be close i, and that it is
a closed isotropic subspace.

Now we have relations:

(a) dimy(Ker*) N y(®) =dimKerA* N,
(b) dimL/(Ker A* + ) = dimKerA* N D.

So we have
dimy(Ker A*) N (D) = dimy(Ker A*)° N (D) = dim B/ (y(Ker A*) + (D)) < oo,
and hence
y(KerA*) ND = p(KerA")°ND, y(Ker A*) + D = p(Ker A*)° + 9.
From these equalitieg(Ker A*) is a Lagrangian subspace apKer A*) € FA, @)

B). O

Coroallary 6.4. Under the assumptions [E1] and [E2] the extension of Ato ©,, + Ker A*,
Al*ngrKerA*, is a selfadjoint operator.

Remark 6.5. The extension in the abov€orollary 6.4is called “Soft extension”. This

is also an interesting extension, although it is far from Fredholm operators. For example,
in the papelf18] the asymptotic behavior of non-zero eigenvalues was investigated for a
symmetric elliptic operator of even order on a bounded domain.
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Example 6.6. Let

A =J(%+B> (6.1)

be an ordinary differential operator acting 6f°(0, 1) ® R2N  where

=(5)

andBis a 2N x 2N symmetric matrix. In this casg = D /D, = RZVERZY with the
symplectic formJ@B — J. The cases treated [t12] reduce to this case (see ald3] and
[26]).

Example 6.7. We describe an example of the Cauchy data space which can be realized in
the distribution space on a manifold.

Let M be a manifold with boundary = aM, andA be a first order symmetric elliptic
operator acting on a space of smooth sections of a real smooth vector Eirtdéze we
mean that the operator is symmetric, when it is symmetric on the space of smooth sections
whose supports do not intersect with the boundary manifald

We assume that the unique continuation property holds for this opetatdth respect
to the boundary hypersurface.

The minimal domain of the definitioD,, is the subspace of the first order Sobolev space
consisting of sections with vanishing boundary values. Even for this case, it is not easy to
determine the domain of the adjoint operator. It is a little bit bigger than the whole first
order Sobolev space. The Cauchy data sgaeincluded in the Sobolev space of order
—1/2 on X ([19]).

Then we assume that has a product form near the boundary hypersurface the
following sense.

Let V= [0, 1] x X is a neighborhood of and on this neighborhood, the operator
takes the form

0
Aza(——i—B),
ot

whereo is a bundle automorphism of the restriction®fto N, and is independent from
the coordinate of the normal directione [0, 1]. It is also skew-symmetric and satisfies
o? = —Id. The operatom is selfadjoint, first order elliptic operator on the vector bundle
E| 5, alsoindependentfrom the normal variatd@d satisfies the relatier» B+ Boo = 0 by
the symmetric assumption. Now we can characterize the Cauchy data space in the following
form.
Let{er}rez\(0), ek > Ofork > No, e < Ofork < —Npande, = Ofor k| < No, k # 0,
be the eigenvalues of the boundary oper&and denote bygy }rc7\ (o the corresponding
orthonormal eigensections. Then we define the spaces by

H+=i > cj¢,-}, H‘:{ > cj¢,-}.

k<0 finite sum k>0 finite sum
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Let A+ be the closure oHH* with respect to thet1/2 order Sobolev norm respectively,
then the direct sum +A_ = 8[2,19].

Then letL. be the closures oH* with respect to the.,-norm, then we have two
symplectic Hilbert spacebk, (M) andg satisfying the conditiongjP1], [CP2] and [CP3]
in Section 5.2

Remark 6.8. In the aboveExample 6.7 if the boundary of the manifold/ is divided

into two components¥y and X4, then the space of boundary valugss also divided

into the sumB = Bp @ B1, wherep; is in the Sobolev space of orderl/2 on X; (i =

0, 1). Now the Cauchy data spagéKer A*) defines a closed symplectic transformation
S:® — B, where® = {x € Bo|dy € B1, (x,y) € y(KerA®)} andS(x) = y, (x,y) €

y(Ker A*). We should note that this follows from the unique continuation property, i.e.,
(Bo @ {0}) N p(Ker A*) = {0}, and ({0} & B1) N y(Ker A*) = {0}. Also a selfadjoint
Fredholm extension is given by the Atiyah—Patodi—Singer boundary condition for the case
of the operators with product form near the boundary. Or more generally, even if it is not
of a product form near the boundary, there are such extensions by global elliptic boundary
conditions (see for examp[28]).

6.2. Continuity of Cauchy data spaces

Let A be the symmetric operator as above satisfying the conditibhksgnd [E2]. Let
{B:}:¢[0,1] be a continuous family of bounded selfadjoint operators on the Hilbert dpace
If each operatoA + B; for ¢ € [0, 1] satisfies the condition&fl] “with a common domain”
D,i.e,(A+ Bf)|*z> = Ap+ B, (¢t € [0, 1]) is selfadjoint and a Fredholm operator, ag&@],
then we have a family of Lagrangian subspage&er(A + B;)*)}:c[0,1] in B and each of
them andy(®) is a Fredholm pair.

Proposition 6.9. The family {y(Ker(A + B;)*)}:c[0,1] i a continuous family. Henceitisa
continuous path in FA o) (B).

Proof. It will be enough to prove at = 0. So let7; : ®y — L @ Ker(A + Bo)*
be a map defined b¥;(x) = (A + Bp)*(x) & mo(x), whereng is a projection operator
o - Dy — Ker(A + Bo)*. Then sincelp is an isomorphism, for a sufficiently small
€ > 0the mapd; for 0 < ¢ < ¢ are also isomorphisms. Hence we have(de# B,)* =
(T))1({0} @ Ker(A + Bo)*), and that the family{Ker(A + B;)*}o</<¢ iS continuous at
t = 0 since the famil>{(Tt)*1}05,56 is a continuous family. O

Remark 6.10. Ifthe operatom?‘53 = Ap has acompactresolvent and a Fredholm operator,
then for any selfadjoint bounded opera®the sumA + B satisfies the conditiorH1].

Remark 6.11. In the case of the papél?2], the family & the family of operators of

the form (6.1)) has varying domaing®} where the operator is realized as a selfadjoint
operator according to the each value of the parameter. But in this case the operator family
can be transformed into the above case of a fixed domain of the definition as a selfadjoint
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realization by a continuous family of unitary operat{#§]. It would not be clear whether
we can do such transformations for the family of elliptic operators in the higher dimensions
(Example 6.7.

6.3. Joectral flow and Maslov index

Finally we just formulate an equality between “Spectral flow” and “Maslov index” arising
from the family of operators explained in the previous subsection.

Let F(L) be the space of bounded Fredholm operators defined on a Hilbert Epace
It is a classifying space for th&-group. Then the non-trivial component of the subspace
FL) consisting of selfadjoint Fredholm operators, we denote 1fb§L) is a classifying
space for thek —1-group (in the complex case) ai@®~’-group (in the real case). Both
of their fundamental groups are isomorphica¢3]. These isomorphisms are given by an
integer, so called, the spectral flow for a family of selfadjoint Fredholm opergprghis
integer is also defined for continuous paths of selfadjoint Fredholm operators without any
assumptions at the end poii¥]. We do not state the definition, but is given in a similar
way as the definition of the Maslov index we gave in this article, or rather it should be
thought of the initiating method which was given in the paj23i to define the spectral
flow based on the basic spectral property of the Fredholmness of the operators.

Let L, A and {B;}:c|o,1) be as above, that is, the family {A + B;} acting on the Hilbert
space L satisfies the conditions [E1] with a common subspace © on which the operators
(A+ B,) are selfadjoint and Fredholm. Then we seethat (A + B; + S)I’D =Ap+B;+s
isalso a Fredholm operator for sufficiently small |s| <« 1. Now instead of the condition
[E2] we assume a stronger property.

[E2]: There exists an € > 0 such that for each ¢ € [0, 1] and |s| < ¢, Ker(A + B; +

S)* m Dy = {0}
Remark 6.12. Of course this condition is satisfied by Dirac type operators.

Under these assumptiorig]] and [E2], and with the common domain of the definition
D for the selfadjoint Fredholm realization, we have the following theorem.

Theorem 6.13. The spectral flow for the family {Ap + B;}:c[o,1) and the Maslov index of
the path of Cauchy data spaces {y(Ker(A + B;)*)}:e[0,1] With respect to the Maslov cycle
(D) coincides.

We do not give a proof of this theorem. First it was provedli] that a coincidence
between “Spectral flow” and “Maslov index of boundary data” for a family of ordinary
differential operatorsxample 6.9. In this case the family of ordinary differential operators
arises as the family of the Euler equations of the symplectic action integral which is defined
by two transversally intersecting Lagrangian submanifolds in a symplectic manifold and the
Maslov index in this case is of the finite dimension (see E16¢). Then it was proved if83]
on three dimensional manifolds and generalized to higher dimensii2s]ifor a family of
Dirac operator$A, };c[0,1] with invertible operators at the end points: 0, 1. In these cases
the Maslov indexes are that in the infinite dimension. We reproved the theorem in the above
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general form irf14]. There we also proved a general addition formula for the spectral flow
when we decompose a manifold into two parts. To prove it we apply our reduction theorem
in Section 4of the Maslov index in the infinite dimensions. Such types of the formula were
also investigated in several authors or believed to hold in a more general c¢ai&Ri32]

In [14] we tried to make clear the meaning of the condition that the operators in the family
are of the form, so called, product form near the separating boundary martiicdnple

6.7). This kind of restriction for the family will correspond to a condition (excision pair)
assumed in the Mayer—Vietoris exact sequence of the singular homology theory.

Appendix A

In this appendix we gather up some of fundamental facts without proofs from the theory
of functional analysis, on which our arguments heavily rely. Because the objects we will
deal with are infinite dimensional spaces and their homotopical properties.

Our Hilbert spaces will be mostly real separable Hilbert spaces and the theorems we sum
up here are valid for both real and complex cases if we do not state particularly.f5béet
a separable Hilbert space with the inner productdyw) and as usual we denote the norm
of the elemenk e H by ||x|| = /{x, x).

A.1. Topology of operator spaces

Theorem A.1l (Kuiper's Theorem).Let H be an infinite dimensional real (complex or
guaternionic) separable Hilbert space, then the group of linear isomorphisms, we denote
it by GL(H), is contractible. Note that the topology of GL(H) is defined by the norm con-
vergence and it is a topological group with this topology.

Corollary A.2. Let H be an infinite dimensional real (complex or quaternionic) separa-
ble Hilbert space, then the subgroup of GL(H) consisting of linear isomorphisms which
preserves the inner product is also contractible to a point. We will denote them by O(H)
(orthogonal group) for thereal case, U(H) (unitary group) for the complex case and Sp(H)
(symplectic group) for the quaternionic case.

Theorem A.3 (Palais’'s Theorem)Let B be a Banach space and we assume there is a
sequence of projection operators {r,, }7° ; onto finite dimensional subspaces L,, = 7, (B)
suchthat L,, ¢ L,+1 and for each x € B, {m,(x)} convergesto x in the sense of norm, that
is, {m,}72 4 converges to the identity operator in the strong sense. Then for each open set
O C B, theinjectionmap j : ind-lim_, 7, (0O) — O isahomotopy equivalence.

Let H be a real (or complex) Hilbert space, and by fixing a complete orthonormal basis
{xn}52 1, we have inclusions of finite dimensional subspakgswhereE, is spanned by
{xi}?_,. Also from these inclusions of subspaces we have inclusions of the general linear
groupsGL (n, R) (or GL(n, C)):

GL(n,R) C GL(n + 1, R)



K. Furutani / Journal of Geometry and Physics 51 (2004) 269-331 327

and
GL(n,C) c GL(n+1,C)

in an obvious way. Then we have also inclusi@ls(n, R) — GLg (H) (in the complex
caseGL(n, C) — GLg(H)), where we denote

GLk (H) = {g € GL(H)|gis of the form Id+ compact operatdr

corresponding to each case.

Proposition A.4. Theinclusion maps
j rind-lim_, GL(n, R) — GLg(H)
for thereal case and
j rind-lim_ GL(n, C) — GLg(H)

for the complex case, are homotopy equivalences.

Appendix B. Spectral notions

Let A be a densely defined closed operator (bounded or not bounded) on a Hilbert space
H.Let) € C, thena is called a resolvent of the operatdrif A — A has a bounded inverse
defined on the whole spaég We denote the set of all resolventsdiid). The complement
C\ p(A) is called spectrum ol and we denote it by(A). LetA € o(A), thenifA — A has
a densely defined inverse, but not continuous, théhcalled a continuous spectrum and
we denote the subset consisting of continuous specti@ gy ). Again leti be ino(A)
and assume that — A is not invertible, that i§x € H|(A — A1)(x) = 0} # 0, then such. is
called an eigenvalue or a point spectrum. We denote the set of eigenvalBgsA)y The
element in the complement#A) of the unionP,(A) UC,(A) is called residual spectrum,
and we denote them R, (A). Let . € R,(A), thenA — A has an inverse, but the image
Im(A — A) is not dense.

Now let A be a selfadjoint operator (bounded or not bounded), then we know that there
are no residual spectrum df that is, the spectru(A) = C,(A) UP,(A) ando(A) C R.

We denote byoesdA) a subset obb(A), each of which element is called “essential
spectrum”, if A is an eigenvalue of infinite multiplicity or a continuous spectrumaAIf
is bounded selfadjoint, thern(A) is compact and A|| = SUR 4 l?l-

Let{E;};cr) be afamily of orthogonal projections defined on a Hilbert sgésatisfying
following properties § 1), (Sp 2), (Sp 3) and & 4), then we callE;}cr) a spectral
measure:

(Sp1) E((H) C Eg(H) for t <s,
(8p2) E; isrightstrong continuoyghatis foreachx € H,

lim E = E;(x),
oim 1+5(X) 1 (x)
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($93) lim E;(x) =x foreachx e H,
—>00

(P4 . lim E;(x) =0 foreachxe H.
——00

Theorem B.1(Spectral Decomposition Theoreml)et A bea selfadjoint operator (bounded
or not bounded) defined on a Hilbert space H. Then there is a unique spectral measure
{E:}{1er) Such that

o0
A == / tdE[.
—0o0

Remark B.2. The domain ®© of the operator A is characterized as

400
@:%eﬂ/ uwamﬁ<w}
—00

Appendix C. Fredholm operators

Let H be a Hilbert space (or Banach space) and'leé a densely defined closed operator
with the domain®. We call a closed operatdrtis a Fredholm operator, if it satisfies
dim Ker(7) is finite,
theimage Ini7) = T(®) isclosed
dim Cokel(T) = H/Im(T) isfinite.

Remark C.1. For bounded Fredholm operatdfswe can prove that the image H) is
closed from the finite codimensionality of it by making use of the open mapping theorem.

Let F(H) be the space of alldbunded” Fredholm operators defined on a Hilbert space
H.

Proposition C.2. The space F(H) isan open subset in the space of all bounded operators
B(H) with the topology of the norm convergence.

Let IC(H) be the two-sided ideal consisting of compact operator8(iH), then the
quotient algebrad(H)/K(H) is called Calkin algebra. i denotes the natural projection
mapr : B(H) — B(H)/K(H), then we have the following proposition.

Proposition C.3. 7~ X((B(H)/K(H))*) = F(H), where (B(H)/K(H))* denotes the group
consisting of the invertible elementsin the Calkin algebra B(H) /IKC(H).

For a Fredholm operator (closed or bound&dye denote by in¢r) the difference

ind(7) = dim KerT — dim CokerT,
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and call it the Fredholmindex” of the operator. Especially for bounded Fredholm operators
T € F(H) we have the following theorem.

Theorem C.4.
ind: F(H) — Z

isalocally constant function, infact, it distinguishesthe connected components (= path-wise
connected) of the space F(H).

Remark C.5.

(a) If H is finite dimensional, then the quantity i(¥j always vanishes. So this has an
only meaning in the infinite dimension.

(b) In the papef7] a similar result for the connected components is proved for the space
of all closed Fredholm operators. The topology for such a space is introduced by
embedding it into the space of bounded operators on the product ghacél as
orthogonal projection operators onto the graphs.

Theorem C.6. Let K be a compact operator on H and T be a bounded Fredholm operator,
then T + K isalso a Fredholm operator and

ind(T + K) =indT.

Appendix D. Existence of a compatible symplectic structure

PropositionD.1. Let(H, (e, o)) beareal Hilbert spaceand » abounded and non-degenerate
skew-symmetric bilinear formon H. Then we can replace theinner product by another one
(e, @) suchthat (H, w, (e, e), J) isa compatible symplectic Hilbert space.

Proof. Let A be the operator defined by
w(x,y) = (AX), y).

ThenA is bounded, skew-symmetric and invertible. PAlt= +/?A o A, and the new inner
product by(x, y) = (|A|(x), y). By this inner product we can expressx, y) = (J(x), y),
whereJ = |A| 71 o A.Now J2 = |A| 1o Ao |A| 10 A = |A|720 A%2 = —Id, and also
(J(), J(») = (Al o |A|7 o Ax), AL 0 A(y) = (JAI7H A 0 A(x), y) = (JA|(x), y) =
(x, y). O

Corollary D.2. Let H be a symplectic Hilbert space and we assume that H is polarized
by two Lagrangian subspaces > and u : H = A & w. Then thereisan inner product with
which the symplectic structure is compatible and the decomposition is orthogonal .

Proof. In the above proof we can assume that the subspaeesl . are orthogonal with
respecttothe inner produ@t, ). Then the operatot, (A(x), y) = w(x, y) mapsitou and
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wto L. Hencé A o A and its square root keep the subspacasd invariantly, so that with
the new inner produaf A|(x), y) the Lagrangian subspacksndu are again orthogonal.
So the new inner productA|(x), y) gives us the compatible symplectic structure. O

References

[1] V.I. Arnold, Characteristic class entering in quantization conditions, Funct. Anal. Appl. 1 (1967) 1-13.

[2] M.F. Atiyah, V.K. Patodi, |.M. Singer, Spectral asymmetry and Riemannian geometry: |, Math. Proc. Camb.
Phil. Soc. 77 (1975) 43-69;

M.F. Atiyah, V.K. Patodi, .M. Singer, Spectral asymmetry and Riemannian geometry: Il, Math. Proc. Camb.
Phil. Soc. 78 (1975) 405-432;

M.F. Atiyah, V.K. Patodi, |.M. Singer, Spectral asymmetry and Riemannian geometry: Ill, Math. Proc. Camb.
Phil. Soc. 79 (1976) 71-99.

[3] M.F. Atiyah, I.M. Singer, Index theory for skew-adjoint Fredholm operators, Inst. Hautes Etudes Sci. Publ.
Math. 37 (1969) 5-26.

[4] B. Booss-Bavnbek, K. Furutani, The Maslov index—a functional analytical definition and the spectral flow
formula, Tokyo J. Math. 21 (1998) 1-34.

[5] B. Booss-Bavnbek, K. Furutani, Symplectic functional analysis and spectral invariants, in: B. Booss-Bavnbek,
K.P. Wojciechowski (Eds.), Geometric Aspects of Partial Differential Equations, Am. Math. Soc. Series
Contemporary Mathematics, vol. 242, Providence, RI, 1999, pp. 53-83.

[6] B. Booss-Bavnbek, K. Furutani, N. Otsuki, Criss-cross reduction of the Maslov index and a proof of the
Yoshida—Nicolaescu Theorem, Tokyo J. Math. 24 (1) (2001).

[7] H.O. Cordes, J.P. Labrousse, The invariance of the index in the metric of closed operators, J. Math. Mech.
12 (1963) 693-719.

[8] S.E. Cappell, R. Lee, E.Y. Miller, On the Maslov index, Comm. Pure Appl. Math. 47 (1994) 121-186.

[9] S.E. Cappell, R. Lee, E.Y. Miller, Selfadjoint elliptic operators and manifold decompositions: Part I. Low
eigenmodes and stretching, Comm. Pure Appl. Math. 49 (1996) 825-866;

S.E. Cappell, R. Lee, E.Y. Miller, Selfadjoint elliptic operators and manifold decompositions: Part Il. Spectral
flow and Maslov index, Comm. Pure Appl. Math. 49 (1996) 869-909;
S.E. Cappell, R. Lee, E.Y. Miller, Selfadjoint elliptic operators and manifold decompositions: Part IIl.
Determinant line bundles and Lagrangian intersection, Comm. Pure Appl. Math. 52 (1999) 543-611.

[10] M. Daniel, P. Kirk, With an appendix by K.P. Wojciechowski: a general splitting formula for the spectral
flow, Michigan Math. J. 46 (1999) 589-617.

[11] J.J. Duistermaat, On the Morse index in variational calculus, Adv. Math. 21 (1976) 173-195.

[12] A. Floer, A relative Morse index for the symplectic action, Comm. Pure Appl. Math. 41 (1988) 393-407.

[13] K. Furutani, N. Otsuki, Spectral flow and intersection numbers, J. Math. Kyoto Univ. 33 (1993) 261-283.

[14] K. Furutani, N. Otsuki, Maslov index in the infinite dimension and a splitting formula for a spectral flow,
Jpn. J. Math. 28 (2) (2002) 215-243.

[15] K. Furutani, On the Quillen determinant, J. Geom. Phys. 49 (2004) 366—-375.

[16] M. de Gosson, La définition de I'indice de Maslov sans hypothése de transversalité, CR Acad. Sci. Paris,
Série | 310 (1990) 279-282.

[17] M. de Gosson, The structure g¢fsymplectic geometry, J. Math. Pures Appl. 71 (1992) 429-453.

[18] G. Grubb, Spectral asymptotics for the soft selfadjoint extension of asymmetric elliptic differential operator,
J. Oper. Thoery 10 (1983) 9-20.

[19] L. Hoermander, Pseudo-differential operators and non-elliptic boundary problems, Ann. Math. 83 (1966)
129-209.

[20] L. Hoermander, Fourier integral operators |, Acta Math. 127 (1-2) (1971) 79-183.

[21] L. Hoermander, The Analysis of Linear Partial Differential Operators Ill, Springer, Berlin, 1985.

[22] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin, 1980.

[23] N.J. Kalton, R.C. Swanson, A symplectic Banach space with no Lagrangian subspaces, Trans. Am. Math.
Soc. 273 (1) (1982) 385-392.



K. Furutani / Journal of Geometry and Physics 51 (2004) 269-331 331

[24] J. Leray, Analyse Lagrangiénne et mécanique quantique: Une structure mathématique apparentée aux
développements asymptotiques et a I'indice de Maslov, Série Math. Pure et Appl., IRMP, Strasbourg, 1978
(English translation 1981, MIT Press).

[25] L. Nicolaescu, The Maslov index, the spectral flow, and decomposition of manifolds, Duke Math. J. 80 (1995)
485-533.

[26] N. Otsuki, K. Furutani, Spectral flow and Maslow index arising from Lagrangian intersections, Tokyo J.
Math. 14 (1991) 135-150.

[27] J. Phillips, Self-adjoint Fredholm operators and spectral flow, Can. Math. Bull. 39 (1996) 460-467.

[28] J.V. Ralston, Deficiency indices of symmetric operators with elliptic boundary conditions, Comm. Pure Appl.
Math. 23 (1970) 221-232.

[29] J. Robbin, D. Salamon, The Maslov index for paths, Topology 32 (1993) 827-844.

[30] J.M. Souriau, Construction explicite de I'indice de Maslov, in: Group Theoretical Methods in Physics,
Springer Lecture Notes in Physics, vol. 50, Berlin, 1975, pp. 117-148.

[31] R.C. Swanson, Fredholm intersection theory and elliptic boundary deformation problems: |, J. Diff. Egs. 28
(1978) 189-201.

[32] C.H. Taubes, Casson’s invariant and gauge theory, J. Differ. Geom. 31 (1990) 547-599.

[33] T. Yoshida, Floer homology and splittings of manifolds, Ann. Math. 134 (1991) 277-323.



	Fredholm-Lagrangian-Grassmannian and the Maslov index
	Introduction
	Symplectic Hilbert space and Lagrangian subspace
	Symplectic Hilbert space
	Lagrangian-Grassmannian
	First method
	Second method

	Fredholm pairs and Fredholm operators
	Fredholm-Lagrangian-Grassmannian
	Souriau map and the universal Maslov cycle
	Proof of Theorem 1.54(a)
	Proof of Theorem 1.54(b) and (c)

	Maslov index in the infinite dimension
	Maslov index for continuous paths
	Hormander index in the infinite dimension
	Universal covering space of the Fredholm-Lagrangian-Grassmannian
	Bilinear forms and Maslov index
	Maslov index for paths of Fredholm pairs of Lagrangian subspaces

	Finite dimensional cases
	Leray index and Kashiwara index
	Complex Kashiwara index

	Polarization and a reduction theorem of the Maslov index
	Symplectic transformation and Canonical relation
	Polarization of symplectic Hilbert spaces
	Proof of Theorem 4.10

	Closed symmetric operators and Cauchy data spaces
	Cauchy data space
	Continuity of Cauchy data spaces
	Spectral flow and Maslov index

	Appendix A
	Topology of operator spaces

	Spectral notions
	Fredholm operators
	Existence of a compatible symplectic structure
	References


